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ABSTRACT 
 

 
 

 

The design of controllers for the ripple-free deadbeat problem has long been 

investigated in the literature, but a need still exists to  offer a better methodology for 

both performance and robustness for linear and nonlinear systems. This research  

proposes a new design methodology for ripple-free deadbeat control for nonlinear 

systems with time delays and disturbances. The proposed method combines two 

control laws, PID controller with Ripple-free Deadbeat controller. The new 

controller is applied to magnetic ball levitation CE 152 as a case study for nonlinear 

systems. 

 
The deadbeat tracking and rejection formulation combines both the polynomial 

approach and the time domain approach, the time domain  approach (PID control) is  

used  to  ensure  the  local  behavior  of  the  nonlinear  system,  while  the 

polynomial approach (Diophantine equation) is used to provide  deadbeat  control 

to the nonlinear system. The nonlinear system is firstly controlled with PID law 

which tuned using Simulink Design Optimization™ software, then a second order 

linear model for the resulting response is estimated to model the nonlinear 

system. After that, a ripple-free deadbeat reference tracking and disturbance 

rejection control method for the system with time delays and disturbances is 

proposed.  

 

The developed control is simulated using MATLAB software. Simulation results 

show that the output signal exactly tracks the input signal and rejects the 

disturbance in short settling time and at time-delay existence. The time domain 

specification for the output signal, control signal, and error signal are  computed 

and satisfied the requirements and constraints.  
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 ملخص البحث

 

 

انخحكى انًشْق انخبنٙ يٍ انخًٕجبث أٔ يب يُز فخشة طٕٚهت ٔانذساسبث انسببقت حسعٗ انٗ حصًٛى َظبو 

ٚسًٗ بُظبو انضشبت انقبضٛت ، ٔنكٍ لا حضال ثًت حبجت نخقذٚى يُٓجٛت أفضم نلأداء ٔانًخبَت عهٗ حذ سٕاء ٔرنك  

نلأَظًت انخطٛت ٔغٛش انخطٛت. ٚقذو ْزا انبحث يُٓجٛت جذٚذة  نخصًٛى َظبو ححكى يشْق خبنٙ يٍ انخًٕجبث 

نخٙ حكٌٕ ححج حأثٛش انخشٕٚش ٔ انخأخٛش انضيُٙ نهًٕجبث. ْزا انًخحكى انجذٚذ ٚقٕو ببنذيج لأَظًت غٛش خطٛت ٔا

بٍٛ َظبيٍٛ ححكى ألا ًْٔب َظبو يشْق خبنٙ يٍ انخًٕجبث ٔ َظبو ححكى بٕاسطت عٕايم ضشبّٛ نًٕجبث انخطأ 

(PID( حى حطبٛق انًخحكى انجذٚذ عهٗ جٓبص سفع انكشة يغُبطٛسٛب .)(CE 152  كحبنت دساسٛت نلأَظًت غٛش

 انخطٛت.

( ٔالأخشٖ بٕاسطت اسخخذاو PIDَظبو انخحكى انًقخشح ٚذيج بٍٛ َٓجٍٛ: طشٚقت انًجبل انضيُٙ )انخحكى بٕاسطت 

(. طشٚقت انًجبل انضيُٙ سخسخخذو Diophantineيجبل انًعبدلاث ٔانخٙ حعخًذ عهٗ حم يعبدنت انذٕٚفبَخبٍٚ )

( نلأَظًت غٛش انخطٛت، بًُٛب طشٚقت يجبل انًعبدلاث local behaviorنًحهٛت )نضًبٌ الاسخجببت انجضئٛت ٔا

سخسخخذو نضًبٌ الاسخجببت انخبيت نهُظبو غٛش انخطٙ. بذاٚت حى انخحكى ببنُظبو غٛش انخطٙ بٕاسطت َظبو ححكى 

(PID ٔانز٘ حى يعبٚشحّ يٍ خلال بشيجٛت )Simulink Design Optimization™ثى حى حقذٚش يٕجت ، 

الاسخجببت انُبحجت عٍ انًخحكى انسببق كًعبدنت يٍ انذسجت انثبَٛت ٔرنك كصٛغت حقذٚشٚت خطٛت نهُظبو غٛش انخطٙ. 

بعذ رنك حى حقذٚى يُٓجٛت نهخحكى ببنُظبو انخطٙ انسببق حقذٚشِ ببسخخذاو َظبو انخحكى انًشْق انخبنٙ يٍ انًٕجبث 

 ش فٙ أقم صيٍ يًكٍ ، ٔرنك ضًٍ ٔجٕد انخأخٛش انضيُٙ. انز٘ ٚقٕو بخخبع الاشبسة انًشجعٛت ٔحقهٛم انخشٕٚ

(. أظٓشث َخبئج انًحبكبة أٌ اشبسة الاسخجببت MATLABحى يحبكبة َظبو انخحكى انجذٚذ ببسخخذاو بٛئت انًحبكبة )

حخبع الاشبسة انًشجعٛت بذقت ٔححزف انخشٕٚش فٙ صيٍ قصٛش جذا ٔفٙ ٔجٕد انخأخٛش انضيُٙ . انخصبئص 

سة الاسخجببت ٔاشبسة انخحكى ٔاشبسة انخطأ حى حسببٓب ٔٔجذَب أَٓى قذ حققٕا انًطهٕة ٔاسخٕفٕا انضيُٛت لإشب

 انششٔط.
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CHAPTER 1  INTRODUCTION 

 

 The main topic of this thesis, optimal ripple-free deadbeat controllers for 

nonlinear systems with time-delays and disturbances, is introduced and investigated.  

An overview of the existing literature dealing with related topics is provided. The 

chapter ends with highlights of the contributions and the outline of this thesis. 

 

1.1  General Introduction 

Rapid advances in control theory have led to a rapid development in discrete-time 

nonlinear control systems[1]. Practically, every aspect of our day-to-day activities is 

affected by some type of control systems. Control systems are found in abundance in all 

sectors of industry, such as quality control of manufactured products, automatic 

assembly line, machine-tool control, computer control and many others[2].Today, 

almost all controllers are computer  implemented meaning digital control [3]. Deadbeat 

controller is a type of digital controllers, which offers the fastest settling time. 

Therefore, deadbeat controller ensures that the error sequence vanishes at the sampling 

instants after a finite time.  

Plants and processes are typically nonlinear; the most typical nonlinearity is 

saturation. Since, computer implemented controllers are a standard configuration, a 

theory for discrete-time nonlinear systems is very important in particular for control 

design purposes.  Indeed, we cannot use linear control theory in cases where: large 

dynamic range of process variables  is possible, multiple operating points are required, 

the process is operating close to its limits, small  actuators cause saturation, etc. [4].  

A control system is a device or set of devices (the controller) that manage the 

behavior of other devices(the plant).[5].  

Systems with delays can be usually encountered in the real world. Time delay is 

defined as the required time between applying change in the input and notices its effect 

on the system output. When the system involves propagation and transmission of 

information on material, the delay is certain to occur. The presence of delays 

complicates the system analysis and the control design [6].  

Systems under environment disturbances are commonly encountered. The problem 

of disturbance rejection arises in many fields [7]. 
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1.2  Digital  Control 

Digital control is a branch of control theory that uses digital computers to act as 

system  controllers. Depending on the requirements, a digital control system can be a 

microcontroller, DSP kit,  FPGA kit, standard desktop computer and so on. Since a 

digital computer is a discrete system, the  Laplace transform is replaced with the Z-

transform. In addition, since a digital computer has finite precision, extra care is 

needed to ensure that the error in coefficients, A/D conversion, D/A conversion, etc. 

are not producing undesired or unplanned effects.   For any digital controller, the 

output is a weighted sum of current and past input samples, as well as past output 

samples, this can be implemented by storing relevant values in any digital controller 

[3]. 

 

 

      1.2.1 Features of Digital Controllers 
 

o Inexpensive 
o Flexible: easy to configure and reconfigure through software 

o Scalable: programs can be scaled  to the limits of the storage space without 

extra cost 

o Adaptable: parameters of the program can be changed 

o Static operation: digital computers are much less prone to 

environmental conditions than capacitors, inductors, etc.[7]. 

 

      1.2.2 Digital Controller Requirements 

 

o A/D converter: converts analog inputs to machine readable format (digital) 

o D/A converter: converts digital output to a form that can be input to a plant 
o Software program: that relates the outputs to the inputs [3] 

 

1.3  Overview of the Literature: 

 The Deadbeat control, Time-delay handling, and Disturbance rejection are 

studied separately or partially in the following studies: 

o H. Elaydi and R. A. Paz, (1998), proposed Optimal Ripple-free Deadbeat 

Disturbance Rejection Controllers for Systems with Time-delays. Affine 

parameterization of the Diophantine equation was used to solve this problem. 

Based on this parameterization, LMI conditions are used to provide optimal or 

constrained controllers for design quantities such as overshoot, undershoot and 

control amplitude [8]. However, they did not deal with nonlinear systems. 

 

o Zongxuan Sun, Tsu-Chin Tsao, (2002), proposed a control design based on the 

internal model principle to track or reject nonlinear exogenous signal dynamics 

for nonlinear systems. Necessary condition to achieve asymptotic disturbance 

rejection based on the proposed control structure was first derived. It was 

http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Discrete_mathematics
http://en.wikipedia.org/wiki/Analog_to_digital_converter
http://en.wikipedia.org/wiki/Digital_to_analog_converter
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shown that the necessary condition becomes sufficient for linear systems with 

linear disturbance dynamics. Inspired by the unique structure of the necessary 

condition, sufficient conditions were then proposed. Simulations of a nonlinear 

plant with chaotic disturbance showed the effectiveness of the proposed scheme 

[9]. But the presence of time-delays was not been considered. 

 

o Steven Weidong Su, (2002), proposed Nonlinear Disturbance Rejection, studied 

the problem of robust disturbance rejection for nonlinear systems based on 

three different methods: H  control, singular perturbation theory and multiple 

model adaptive control [7]. However, he did not handle the problem of time-

delay presence. Also, his approach differs than ripple-free deadbeat control 

strategy.  

 

o Al Batch, (2009), proposed Multi-rate Ripple-Free Deadbeat Control. Two 

degree of freedom controller for the fixed-order constrained optimization 

problem performance specifications utilizing the parameters of Diophantine 

equation to build a multi-rate ripple-free deadbeat control was presented. A 

combination between the concept of multivariable and robust single rate was 

utilized. A time-delay was also presented in simulation and was solved by using 

deadbeat controller based on solving Diophantine equation parameters [10]. 

However, it handled linear systems only. 

 

o W. Sakallah, (2009), proposed Comparative Study For Controller Design Of 

Time-delayed Systems, which studied delay modeling using different 

approaches such as Pad’e approximation and Smith Predictor in continuous 

system and modified z-transform in discreet systems. Delays were assumed to 

be constant and known. The delays in the system are lumped in the plant model. 

This study showed the design of stable and optimal controller for time-delay 

systems using algebraic Riccati equation solutions and PID control [6]. 

However, ripple-free deadbeat strategy was not considered. 

 

o M. Elammasie, (2011), proposed a ripple-free deadbeat controller of multi-rate 

nonlinear system. This controller was used to track a reference input with zero 

steady-state error in finite time and with minimum overshoot and minimum 

energy in the presence of a time-delay [11]. However, it did not handle systems 

under disturbances. 

 

By contrast, this research will present a collective bunch of previous studies, that 

controls nonlinear systems providing time-delays and disturbances via a ripple-free 

deadbeat controller strategy. 

 

1.4  Thesis Motivation 

 Advancement in control systems theory have progressed at enormous rates 

over the past four decades. Not long ago, issues such as stability and performance were 
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the topics of the hour. Issues such as nonlinear systems control, minimum settling time, 

time delays and disturbance elimination could barely be addressed simultaneously. 

 

There is a wide area of applications for control systems, where nonlinear phenomena 

cannot be avoided. These applications range from ship or submarine vehicle control, 

position control for robotic systems in a precision manufacturing process, autonomous 

vehicle systems, biochemical reactors, power plants and many others [12]. Therefore, 

control of nonlinear systems is an important area of control engineering with a range of 

potential applications. 

 

Time-delay systems are unavoidable in many control systems. Most of the classical 

methods that deal the control system such as root locus and nyquist criterion, cannot 

deal with delay. Hence, a strong need to deal with them is exist.  

 

A desire to develop new disturbance rejection methodologies that are simpler and more 

robust than existing methodologies is needed. Existing methodologies for rejecting 

known disturbances use complex paradigms. This thesis will use a simple and effective 

methodology to reject undesired disturbances. 

 

Many processes is required to settle in minimum period, which is called in control 

system deadbeat systems, thus one of thesis aim is to achieve minimum settling time for 

these applications. 

 

Hence, for all stated previous issues, this work is done. As seen from previous section, 

no complete dealt to all issues is investigated at once, so this thesis will deal all these 

topics at the same time, and with different and effective methodology.  

 

 

1.5  Thesis Objectives 

This Research presents an approach for the ripple-free deadbeat controller for 

nonlinear system in order to track random input signal in presence of time delays and 

known disturbance signals via tuning PID controller and solving Diophantine equation. 

 

The control objectives are: 

 

1. Designing Ripple-Free Deadbeat Controller that achieve good transient response 

in presence of time-delay for nonlinear system which makes the output signal y 

to track any random input signal with zero steady-state error in the smallest 

number of sampling instants (time steps)  

2. Tuning PID controller 

3. Minimize the effect of disturbances on the system, since disturbances may enter 

the system from many nodes such as actuators and sensors 

4. Solving time-delayed nonlinear control problem under disturbance using ripple-

free deadbeat controller 
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5. Studying the effect of time-delays and disturbances on the stability and 

performance 

6. Realizing the developed controller using MATLAB software Toolbox. 

 

 

1.6  Thesis Contribution 

 This thesis presents methodologies for designing internally stabilizing ripple-

free deadbeat controllers for nonlinear systems to solve the tracking of an arbitrary 

reference signal and the attenuation of general disturbances. Nonlinearities on the 

system is handled by SIMULINK design optimization toolbox. Ripple–free 

deadbeat, disturbance attenuation, tracking problem is formulated based on the 

solution of the Diophantine equation. The approach also can handle systems with 

time delays, where the time delay is not an integer multiple of the sampling time.  

 

1.7  Thesis Outlines 

This thesis is organized as follow: The Second chapter gives backgrounds and 

details and explains the proposed methodology. The third chapter presents the magnetic 

ball levitation CE152. The fourth chapter presents the PID controller tuning of 

magnetic ball levitation CE152. The fifth chapter shows the methodology and 

approach. The sixth chapter shows simulations and results, and the final chapter 

concludes this thesis. 
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CHAPTER 2 BACKGROUND 

 
 

The purpose of this chapter is to emphasis the importance of the concept of 

deadbeat control for nonlinear systems. This chapter gives background for the 

forthcoming chapters. Previous studies which mentioned in Chapter 1 have not 

treated ripple-free deadbeat controller for nonlinear systems, disturbance rejection and 

time delay simultaneously. Therefore, my work will be started with Elaydi's and 

Elammassie's results and apply Diophantine equations to the estimated linear plant 

after applying PID controller optimization. Therefore, this chapter will cover briefly 

the deadbeat  controller  for  linear  systems,  nonlinear  systems,  PID optimization, 

time delay and disturbance systems, designing  steps  to  deadbeat  magnetic  ball  

levitation  CE152,  and  the necessary assumptions. 

 

 
 

2.1  Nonlinear Systems 

In  mathematics,  a  nonlinear system  is  a  system  which  does  not  satisfy the 

superposition principle, or whose output is not directly proportional to its input. Less 

technically, a nonlinear system is any problem where the variable(s) to be solved 

cannot be written as a linear combination of independent components [13] such as  

squared terms. 

As an example for nonlinear systems, magnetic ball levitation CE152 will be 

considered in this thesis. Any other nonlinear system could be manipulated in the same 

manner as approached in this thesis. Motion equation of Magnetic ball levitation 

CE152 model can be described as: 

 

                                                   ̈      ̇  
    

(    ) 
                                          (   ) 

  

where    is the mass ball,   is gravity,   is ball position,   is the coil current,    is coil 

constant,     is viscous friction coefficient, and     is position offset. 
 

A more intelligent answer is that thorough understanding of linear phenomena and 

linear mathematics is an essential prerequisite for progress in the nonlinear area. 

Moreover, many important physical systems are "weakly nonlinear", in the sense that, 

while nonlinear effects do play an essential role, the linear terms tend to dominate the 

physics, and so, the system is essentially linear. As a result, such nonlinear phenomena 

are best understood as some form of perturbation of their linear approximations. The 
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advent of powerful computer algorithms has excited a veritable revolution in our 

understanding of nonlinear problems.  

Hence, the approach in this thesis is to estimate linear behaved system to apply it in 

further steps. This is done via applying PID feedback control law tuned by Simulink 

Design Optimization™ software, the behaved simulated output is estimated as a second 

order system:  

                                   
  

 

           
                                                                                    (   )  

 

where    is the natural frequency and   is the damping ratio. 

 

 

2.2  Time-Delay Systems 

Systems with delays can be usually encountered in the real world. Time delay is 

defined as the required time between applying change in the input and notices its effect 

on the system output. When the system involves propagation and transmission of 

information or material, the delay is certain to occur. The presence of delays 

complicates the system analysis and the control design. 

In this thesis, delays will be lumped into a single delay in the feedback loop, 

representing delay in control action or delayed measurements.  

In the continuous-time system case, the delay is expressed as infinite dimensions
she

. In 

the discrete-time system case, finite dimensional 
hz 
can be considered as part of the 

system. The transfer function of a delay can be represented in M-file using transfer 

function expression "tf(numertator,denominator,'ioDelay',Td)" or using SIMULINK 

block (Transport delay). 

 

2.3  Systems with Disturbances 

Tracking or rejection of known exogenous signals with known generating dynamics 

is of major concern in feedback control design. Linear feedback control based on the 

internal model principle achieves asymptotic performance for linear systems with linear 

exogenous signal dynamics. This thesis presents a control design based on the internal 

model principle to track or reject known exogenous signal dynamics for nonlinear 

systems. Necessary condition to achieve asymptotic disturbance rejection based on the 

proposed control structure is first derived. Simulations of a nonlinear plant with 

disturbance show the effectiveness of the proposed scheme. 

 

2.4  Ripple-free Deadbeat Control 

The study of deadbeat control of discrete systems dates back to the early 1950’s. 

Deadbeat control makes the output of the systems coincide with the reference input 

signal in a finite period of time. Deadbeat control achieves exact settling after a finite 

number of discrete sampling instants. 
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However, there may exist ripple (non–zero deviation between the output response and 

the reference input signal) in the continuous plant between the discrete sampling 

instants. This inter-sample ripple is undesirable. There are two sources of inter–sample 

ripple: The first source is due to the failure of the design to cause the control signal to 

settle. This problem is due to the design allowing cancellation of the plant zeros. The 

second source of inter–sample ripple is due to the system being unable to track a 

moving reference between samples (lack of a continuous internal model).  

To obtain a ripple–free deadbeat design, a continuous internal model and cancellation of 

no plant zeros are required, so that the response has the zero ripple property. 

Two approaches for obtaining a deadbeat feedback controller for linear discrete time 

systems have been developed. 

The first approach is called the time domain approach and is based on providing 

minimum control energy. This approach uses the controllability matrix and the state 

space realization in designing deadbeat controllers. This approach shows the trade-off 

between the sampling period, the number of steps to settle, and the magnitude of the 

control signal 

The other approach is the polynomial method. In this approach, the design procedure 

operates on the transfer function, here, the error between the system output and the 

reference signal is made to decay to zero in a finite number of sampling intervals. The 

appropriate controller involves the cancellation of both the plant poles and zeros. 

One drawback of the polynomial approach has been that the control signal may not 

attain its steady state form in finite time, hence ripples may show up in the plant 

continuous time output (in between the sampling instants). This occurs due to 

cancellation of plant zeros by controller poles. This results in controller modes that may 

be excited by the reference signal but are not affected by feedback.  

This problem is overcome by the design of ripple-free controller which  is used in this 

thesis. Thus, the proposed controller combines two deadbeat controllers,  one of them 

will use polynomial approach and the other will use time domain approach. 

An important point to emphasis is that the proposed deadbeat control is based on 

internal model principle which could combine time delay and disturbance dynamics in 

the system to be controlled, and hence all part of thesis topic are taken into account on 

problem formulation.  

 

2.5  Designing steps to deadbeat Magnetic ball levitation 

Magnetic ball levitation CE152 will be used as a case study for nonlinear system. 

The proposed approach is completed following these steps 
 

o Deriving  the  input/output  relation  of  maglev  sub-models  (D/A  converter, 

Power amplifier, ball & coil subsystem, Position sensor, A/D converter) 
 

o Applying PID controller tuning via Simulink Design Optimization™ software 
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o Evaluating second order estimation to the step response of maglev with PID 

controller 

 

o Formulating the plant to be deadbeat controlled in presence of time delay and 

disturbance 
 

o Evaluating deadbeat controller for estimated model 
 

 

o Simulating the developed control using MATLAB software  
 
 

 

2.6  Design Constraints 

 

The necessary and sufficient conditions for the ripple-free continuous response are 

that [8]: 

o The continuous system is controllable with discrete input at period T 

 
o The plant plus the Hold plus the Controller must have a continuous internal 

model of the reference input that is observable from the output 

  
o The closed-loop system be internally stable 
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CHAPTER 3 MAGNETIC BALL LEVITATION MODEL 

CE152  

 

Levitation is the process by which an object is suspended by a physical force 

against gravity, in a stable position without solid physical contact.  A  number  of  

different  techniques  have been  developed  to  levitate matter, including the 

aerodynamic, magnetic, acoustic, electromagnetic, electrostatic, gas film, and optical 

levitation methods [14]. Magnetic levitation systems have many varied uses such as in 

frictionless bearings, high-speed maglev passenger trains, levitation of wind tunnel 

models, vibration isolation of sensitive machinery, levitation of molten metal in 

induction furnaces and levitation of metal slabs during manufacturing. These 

systems have nonlinear dynamics  that are usually open loop unstable and, as a 

result, a high performance feedback controller is  required to control the position of 

the levitated object.  Due to inherent nonlinearities associated with electromechanical 

dynamics, the control problem is usually quite challenging to the control engineers,  

since a linear controller is valid only about a small region around a nominal operating 

point [15]. This chapter will talk about magnetic ball levitation CE152 as one of 

Magnetic levitation systems. 

 

 

3.1 Introduction to Magnetic Ball Levitation CE152 
 

The  Magnetic  Levitation  Apparatus  shows  control  problems  with  nonlinear, 

unstable  systems.  The  apparatus  consists  of  a  steel  ball  held  in  a  magnetic  

field produced by a current-carrying coil. At equilibrium, the downward force on the 

ball due to gravity (its weight) is balanced by the upward magnetic force of attraction 

of the ball towards the coil. Any imbalance, the ball will move away from the set-

point position. The basic control task is to control the vertical position of the freely 

levitating ball in the  magnetic  field  of  the  coil.  The  Magnetic  Levitation  

Apparatus  is  a  nonlinear, dynamic system with one input (set point) and two 

outputs (ball position  and coil current) [16]. 
 

 

The CE 152 Magnetic Levitation Model, shown in Figure (3.1) and its block 

diagram, shown in Figure (3.2)  is an unstable system designed for studying system 

dynamics and experimenting with number of different control algorithms [17]. 
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                           Figure (3.1): CE152 magnetic ball levitation. 

 
 

      

              Figure (3.2): Principal scheme of the magnetic levitation model. 
 

 

The scheme shows, that the model interface can be considered at two different levels: 

o physical level - input and output voltage to the coil power amplifier and from 

the ball position sensor. 

o logical level - voltage converted by the data acquisition card and scaled to  1 

machine unit [MU]. Because simulation is in MATLAB environment, the later 

convention is used. 
 

 

3.2 Model Analysis 
 

The CE152 model, shown in Figure (3.2) consists of the following sub models [18]: 
 

 D/A converter. 

 Power amplifier. 
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 Ball & coil subsystem. 

 Position sensor. 

 A/D converter. 

 

3.2.1 D/A Converter 
 

D/A  Converter,  shown  in  Figure (3.3)  has  model  output  voltage     where the 

input is    . The digital  to  analog  converter  gain        with offset   . Its output is 

defined by Eq. (3.1). (Note: this block is added for real time application) 
 

                                                                          (   )  
 

 

 

 

 

 

 

 

 

 

                                      Figure (3.3):  D/A Converter 
 

 

3.2.2 Power Amplifier: 
 

The power amplifier is designed as a source of constant current with the feedback 

current stabilization, as shown in Figure (3.4).  
 

 

 

 

 

 

 

 

 

 

 

 

(a) Power amplifier (b) Internal structuree 

Figure (3.4):  The power amplifier and its internal structure. 

Relation between input current and output voltage from power amplifier will be found 

as following: 

From internal structure, Figure (3.4.a): 

 

                                                        
  

  
                                                             (   ) 
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                                                      (    (   ))                                                    (   ) 

from Eq. (3.2) and (3.3): 
 

      
  

  
          (    (   )) 

 

                            

 

 
 

 
 
    
 

.
 

 
     

           
 

/ 

 

And if               , as the case in this system,  

 

                                     
 

 
 
    
 

.
 

 
    

/     (
 

      
)                  (   ) 

 

Where    is Gain, and     is the time constant. 

 

 

Equation (3.4) will be used in the next chapter in the derivation of the state space of 

linearized model of magnetic ball levitation CE 152 
 

 
 

3.2.3 Ball and Coil Subsystem: 
 

The motion equation is based on the balance of all forces acting on the Ball. We have 

two forces: gravity force Fg, electromagnetic force Fm  and the difference is the 

acceleration force Fa , as shown in Figure (3.5), equation of free body diagram will be 

derived where      the coil current,      coil constant,      position offset, and       
damping constant. 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.5):  Free diagram of the ball and the 

forces. 
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According to Newton's second law of motion, the acceleration of an object as 

produced by a net force is directly proportional to the magnitude of the net  force, in 

the same direction as the net force, and inversely proportional to the mass of the object 

[19]. By mathematics equations: 

 

The net force is  

 

                                                                                                                                 (   ) 
 

where    : Acceleration force, 

 

                                        ̈                                                                                        (   ) 

 

      Magnetic force, 

 

                                
    

(    ) 
                                                                                 (   ) 

 

     : Gravitational force, 

 

                                                                                                                               (   ) 

 

Substituting  Eq. (3.6), (3.7) and (3.8) into (3.5) results in: 

 

                                                ̈  
    

(    )
 
                                                    (   ) 

 

Limits of the ball movements and ball damping is taken into account. So, to model the 

damping, the term     is introduced into the equation 

 

                                      ̈      ̇  
    

(    ) 
                                             (    ) 

 

Equation (3.10) will be used in the next chapter in the derivation of the state space of 

linearized model of magnetic ball levitation CE 152. 
 

 

3.2.4 Position Sensor. 
 

The position sensor, shown in Figure (3.6) which 

used to measure the ball position  , has model 

output voltage  , gain    and offset      
 

 

Figure (3.6):  Position sensor subsystem. 
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The output is defined in Eq. (3.11) 
 

                                                                                 (    )  

 

3.2.5 A/D Converter. 
 

The A/D Converter, shown in Figure (3.7) has model output voltage       input      
gain      and offset       (Note: this block is added for real time application) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.7):  Position sensor subsystem. 
 

 

The output is defined in Eq. (3.12) 
 

                                                                         (    )  
 
 

3.2.6 Magnetic constant    
 
Coil Energy: 
 

                           
 

 
                                                                                                      (    ) 

 
    where     inductance,  

                                 
  

 
                                                                                                   (    ) 

    

 and R: Resistance, 

  

                                 
 

  
                                                                                                  (    ) 

   
where     length of the coil,      number of coil turns,     permeability of the coil core, 
    Cross section area 
 

Substituting  Eq. (3.14) and (3.15) into (3.13) results in: 
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gain and offset

D/A Converter

saturation
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Ball damping

1/mk

1/m

1

u - Input
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(
    

 
)    

      

  
                                                                  (    ) 

 

By taking the derivative of last equation with respect to    , we get the magnetic force, 

that’s: 

   
   
  

 
      

   
 
     

 

  
 

 

Hence,  

                                            
    

 
                                                                                  (    ) 

 
 

 

3.3 Complete Modeling: 

  
The final block diagram of the magnetic levitation model CE 152 is given in 

SIMULINK model as shown in Figure (3.8): 

Figure (3.8):  The complete model of magnetic levitation CE152 

 

Table (3.1) shows CE152 model parameters that used in simulating the system.  

 

 

Table (‎3.1): Parameters of magnetic ball levitation CE 152 [16] 
 

                           Parameter Symbol Value 
ball diameter    12.7x10-3 m 
ball mass    0.0084 kg 
distance from the ground and the edge of the magnetic 
coil 

   0.019 m 

distance of limits= 0.019 -      0.0063 m 
gravity acceleration constant   9.81 m.s^-2 

maximum DA converter output voltage      5 V 
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coil resistance    3.5 Ω 

coil inductance    30 x10
-3   

H 

current sensor resistance    0.25 Ω 
current sensor gain    13.33 

power amplifier gain     100 

maximum power amplifier output current     1.2 A 

amplifier time constant=   /*(     )           +    3x      
s 

amplifier gain=     *(     )           +    0.3 
viscose friction     0.02 N.s/m 

converter gain     10 

Digital to Analog converter offset    0 V 
Analog to Digital converter gain     0.2 
Analog to Digital converter offset      0 V 

position sensor constant    797.4603 
coil bias    6 x10

-3  
m 

Aggregated coil constant    0.606 x10
-6

 

N/V 
coil constant =   /   

     2.16 x10
-6

 

N/V 

 

 

 

3.4 Open Loop System: 
 
Using SIMULINK, the open loop step response of the model is shown in Figure (3.9)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3.9): Open loop response of magnetic levitation CE152 
 
 

From last figure, we deduce that this system needs a controller in order to prevent 

saturation besides performance modification. This aim is achieved in the next two 

chapters. 
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CHAPTER4   PID OPTIMIZATION 

 

A proportional–Integral–Derivative (PID) controller  is a generic control loop feedback 

mechanism widely used in industrial control systems. A PID controller calculates an 

"error value" as the difference between a measured process variable and a desired 

setpoint. The controller attempts to minimize the error by adjusting the process control 

inputs [20]. 

Simulink Design Optimization™ software provides interactive tools, functions, and 

Simulink blocks for tuning design parameters in a Simulink model to meet objectives 

such as improved system performance and minimized energy consumption. Using 

design optimization techniques, we can meet both time- and frequency-domain 

constraints such as overshoot and phase margin [21].  

Since the developed RFDBC algorithm which depends on polynomial approach is 

applied only to linear systems; firstly, we seek to obtain a linear expression for the 

process. Also, most processes in real world are unstable. Hence, the purpose of this 

chapter is to solve stability and performance issues, and at the same time obtain an 

equivalent linear expression for the plant.   

 

 

4.1  Nonlinear Systems: 
 

Nonlinearity is ubiquitous in physical phenomena. Fluid and plasma mechanics, gas 

dynamics, elasticity, relativity, chemical reactions, combustion, ecology, biomechanics, 

and many, many other phenomena are all governed by inherently nonlinear equations. 

For this reason, an ever increasing proportion of modern mathematical research is 

devoted to the analysis of nonlinear systems [22]. 

 

Nonlinear systems are vastly more difficult to analyze. In the nonlinear problems, many 

of the most basic questions remain unanswered: existence and uniqueness of solutions 

are not guaranteed; explicit formula are difficult to come by; linear superposition is no 

longer available; numerical approximations are not always sufficiently accurate; etc. 

[23].  

 

A more intelligent answer is that thorough understanding of linear phenomena and 

linear mathematics is an essential prerequisite for progress in the nonlinear area. 

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Industrial_control_system
http://en.wikipedia.org/wiki/Process_variable
http://en.wikipedia.org/wiki/Setpoint_(control_system)
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Moreover, many important physical systems are "weakly nonlinear", in the sense that, 

while nonlinear effects do play an essential role, the linear terms tend to dominate the 

physics, and so, the system is essentially linear. As a result, such nonlinear phenomena 

are best understood as some form of perturbation of their linear approximations. 

The advent of powerful computer algorithms has excited a veritable revolution in our 

understanding of nonlinear problems.  

 

 

4.2  Stability and performance issues: 
 

Given a physical system, the ultimate goal in control engineering is to achieve control 

specifications that mostly are stated in two criteria: stability and performance. 

 

Internal stability is usually the most fundamental requirement in systems. For unstable 

plants; stabilization, tracking problem and disturbance rejection led to the most used 

structure in control theory: Feedback structure. One of these structures is PID 

configuration.  

 

Performance defines the exact way the designer desires the system to operate. 

Performance cannot always be easily described. Several restrictions can be put on the 

behavior of the system. Such restrictions include overshoot, undershoot, settling time, 

rise time and amplitude of control signal. 

 

 
 

4.3  PID controller theory: 

The PID controller calculation (algorithm) involves three separate constant parameters, 

and is accordingly sometimes called three-term control: the proportional, integral and 

derivative values, denoted P, I, and D. Heuristically, these values can be interpreted in 

terms of time: P depends on the present error, I on the accumulation of past errors, and 

D is a prediction of future errors, based on current rate of change. The weighted sum of 

these three actions is used to adjust the process as shown in Figure (4.1) [20]. 

 

 

 

 

Figure (4.1): Block diagram of PID controller 

Defining  ( ) as the controller output, the final form of the PID algorithm is: 

 ( )     ( )    ∫  ( )   
 

 

  
 

  
 ( ) 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Heuristic
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where 

  : Proportional gain, a tuning parameter 

  : Integral gain, a tuning parameter 

  : Derivative gain, a tuning parameter 

 : Time or instantaneous time  

 : Variable of integration; takes on values from time 0 to the present  

 

4.3.1 PID Tuning 

Tuning a control loop is the adjustment of its control parameters to the optimum values 

for the desired control response. PID tuning is a difficult problem, because it must 

satisfy complex criteria within the limitations of PID control.  

There are several methods for tuning a PID loop. The most effective methods generally 

involve the development of some form of process model, then choosing P, I, and D 

based on the dynamic model parameters. Manual tuning methods can be relatively 

inefficient. 

Thus, PID optimization software is used to ensure consistent results. Software packages 

will gather the data, develop process models, and suggest optimal tuning. Simulink 

Design Optimization™ software is used for this purpose. 

 

4.4  PID Optimization: 

 
Simulink Design Optimization™ software optimizes model response by formulating 

the requirements into a constrained optimization problem. It then solves the problem 

using optimization methods. 

 

For time-domain requirements, the software simulates the model during optimization, 

compares the current response with the requirement and uses gradient methods to 

modify design variables to meet the objectives [21]. 

 

 
 

4.5  Magnetic Ball Levitation CE152 (Nonlinear System) Tuning:  

 
We model a CE 152 Magnetic Levitation system where the controller is used to 

position a freely levitating ball in a magnetic field. The control structure for this model 

is fixed and the required controller performance can be specified in terms of an 

idealized time response. Controller parameters are tuned via Design optimization tool. 

 

 

 

 

http://en.wikipedia.org/wiki/PID_controller#Limitations_of_PID_control
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4.5.1 Control Problem Description: 
 

As shown at the end of chapter 3, open loop nonlinear system is unstable and its 

specifications are not adequate. Thus, stability and performance criteria will be solved. 

Then, an equivalent, linear expression of the resulting system will be derived and used 

at the next chapter. 

 

Hence, the requirement of the controller is positioning the ball at any arbitrary stable 

location in the magnetic field and moving it from one position to another. 

 

Simulink Design Optimization™ and numerical optimization is ideally suited to tune 

the PID coefficients because: 

 

 The system dynamics are complex enough to require effort and time for analysis if 

we approach the problem using conventional control design techniques 

 The controller structure is fixed 

 The step response we require from the system is known. 

 

4.5.2 Model Structure: 
 
 
The model includes the following blocks shown in Figure (4.2): 
 

 
 

 
 
 

Figure (4.2): CE152 with PID controller 
 
 
 

 
 Controller block, which is a PID controller. This block controls the output of the 

Plant subsystem 

 Control Signal Scaling 

block, Figure (4.3), 

 

 

 

 

                                             Figure (4.3): Control Signal Scaling Block 
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is included because as the force from the coil decays according to an inverse square 

law, larger voltages are required, the further the ball is from the coil.  Hence, the 

control signal is scaled to account for this action 

 Input Signal block, applies a reference signal to the plant 

 Plant subsystem, is the Magnetic Ball Levitation CE152. In fact, Simulink Design 

Optimization™ tool linearizes the nonlinear plant in each iteration, then computes 

tuned gains   ,    ,    . 

 

4.5.3 Design Requirements 
 
The plant output must meet the following step response requirements: 

 

 Rise time less than 0.2 seconds 

 Settling time less than 0.7 seconds 

 Overshoot less than 5% 

 

4.5.4 Specify Step Response Requirements 
 

1) Add a Signal Constraints block to the model at signal position we seek to 

optimize. We select View > Library Browser > Simulink Design 

Optimization >  Signal Constraints as shown in Figure (4.4) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.4): Control Signal Scaling Block 

 

2) Connect the block to the output signal, Figure (4.5) 
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Figure (4.5): CE152 with PID controller Tuning 

 

 

3) Double click on signal constraint block > Goals > Specify step response 

characteristics, as shown in Figure (4.6) and Figure (4.7) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.6): Step Response Characteristics 

 

 

 



www.manaraa.com

24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.7): Step Response  
 

 

4.5.5 Defining Tuned Parameters 
 

1) Double click on signal constraint block > Optimization > Tuned Parameters 

2) Add desired system parameters to be optimized 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.8): Design parameters 

 

 

 

4.5.6 Running the optimization 
 

1) Double click on signal constraint block > Optimization > Start, An 

optimization progress window opens. Default optimization solver 

Gradient descent modifies the design variables to reduce the distance 

between the simulated response and the design requirement line 

segments. After the optimization completes, the optimization progress 

window, Figure (4.9) resembles the tuned parameters: 
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Figure (4.9): Optimization progress window  

 

Hence:  

 

                                                                                      (   ) 
 

 

2) Plot current response, 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure (4.10): Output signal after PID optimization 

 

From Figure (4.10), notice that:      = 0.2 sec,          = 0.7 sec,      = 5% 
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4.6  Magnetic Ball Levitation CE152 (Linear System) Tuning:  
 

 

To obtain an equivalent, linear plant that needed in the following chapter, depending 

on mechanism of PID optimization algorithm, an equivalent system is derived in this 

section. 

 

When Simulink Design Optimization™ toolbox is used for optimizing nonlinear plants, 

optimization algorithm is based on finding firstly an equivalent linear plant at each 

iteration, and then computes tuned gains   ,    ,    . 
 

Thus, to accomplish the purpose of this section, a linearized plant is derived, then using 

obtained PID tuned parameters, a closed loop system is computed to use it in the next 

chapter. 

 

The magnetic ball levitation CE152, shown in Figure (4.11) is characterized by third 

order differential equation (since it has three states), as shown in Eq.(3.10): 

 
 

 

 

 

 

 

 

 

 

Figure (4.11):  Plant of magnetic Ball levitation CE152 

 

   ̈  
    

(    ) 
          ̇ 

                 

To obtain a transfer function expression  ( ), 
 

                                                   ( )   (    )                                                    (   ) 
 

 we must find firstly the state space model (       ), 
 

  let  

                                                                                                                                         (   ) 
                            ̇   ̇                                                                                                    (   ) 
                                                                                                                                           (   ) 
                     ̇   ̈,   ̇    ( )̇                                                                                        (   )                  
 
 By substituting Eq.(4.3),(4.4), (4.5) and (4.6) into Eq.(3.10): 
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                       ̇  
  
   

  (     ) 
    

   

  
                                                            (   ) 

                

 
From Eq.(3.4, we have  (     )     , and by converting s-domain to time-domain 

implies that: 

 

   ( )̇   ( )     ( ) 
 

  ( )    ̇    ( )   ( )

  
 

 

                                                                 ̇    
   ( )    

  
                                                (   ) 

 

 

Thus 

 

                                

[
 
 
 
 
 

 ̇    

 ̇  
  
   

  (     ) 
    

   

  
  

 ̇  
   ( )    

  ]
 
 
 
 
 

                                                 (   )       

 

 

Notice that Eq. (4.9) is nonlinear (nonlinear system); thus we need to linearize it, that 

the term 

 

 
    

  (     ) 
   (    ) 

around certain operating point (a,b). Using Taylor series expansion for function of two 

variables (two terms are sufficient description), 

 

  ̇  
    

  (    ) 
 *

      
  (    ) 

+    [
    

  (    ) 
]       

   

  
     (    ) 

 

      (
    

  (    ) 
  )  *

      
  (    ) 

+     
   

  
   [

    
  (    ) 

]     (    ) 

 

 

Evaluating the constant term in Eq.(4.15), using ball position at     (the ball is freely 

at the ground of CE152), means no applied coil current ( ( )) nor motion velocity ( ̇) or 

acceleration ( ̈) that’s: 

 

                                                                                                               (    ) 
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Hence, substituting Eq.(4.12) into Eq.(4.11) results in: 

 

      (
    

  (    ) 
  )  *

      
  (    ) 

+ ( )   
   

  

( )  [
    

  (    ) 
] ( )   

 

       (
    

  (    ) 
  )                                                                                            (    ) 

 

 

Substituting Eq.(4.13) into Eq.(4.11) implies: 

 

                        ̇  *
      

  (    ) 
+     

   

  
    [

    
  (    ) 

]                       (    ) 

 

 

This equation is linear and thus the system is now linear by substituting Eq.(4.18) into 

Eq.(4.8): 

 

               

[
 
 
 
 
 

 ̇    

 ̇  *
      

  (    ) 
+     

   

  
   [

    
  (    ) 

]   

 ̇  
   ( )    

  ]
 
 
 
 
 

                           (    )       

 

Plant output equation is Eq. (3.11) 

  

Notice that Eq.(4.15) describes CE152 model without ADC, DAC and position sensor 

models shown in Figure (4.10). Hence, modifying it to obtain the total system shown in 

Figure (3.2) is done as following: 
 

               

[
 
 
 
 
 

 ̇    

 ̇  *
      

  (    ) 
+     

   

  
   [

    
  (    ) 

]   

 ̇  
        ( )    

  ]
 
 
 
 
 

                           (    )       

 

System output equation is Eq.(3.12).  

 

 

Hence, state space model of Linearized CE152 model around certain operating point 

(a,b) is written as: 
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        [
 ̇ 
 ̇ 
 ̇ 

]  

[
 
 
 
 

   
      

  (    ) 
    

  

    
  (    ) 

  
  

  ]
 
 
 
 

[

  
  
  
]  [

 
 

     
  

]   ( )       (    ) 

 

       ,   -  ,       - [

  
  
  
]  , -   ( )                                                        (    )  

 

 

In order to compute Eq.(4.17) and (4.18) at specified operating point (a,b), we must find 

variables a,b. System parameters are substituted directly from Table(3.1). 

From Eq.(4.13):  

    
    

  (    ) 
 

    
    (    )

 

  
 

                                                              (    )√
   

  
                                         (    ) 

 

 

Notice that state space model differs as (a,b) is changed. Let us use the center position 

as typical case for equilibrium point with following properties: 

 

 Ball position at the center of gap distance  , i.e.     
 

 
 
     

 
          

 Equilibrium state            ̇                ̈         ̇   ̇     
 Current has a constant value  ( )      , 

Thus,               (          )  ̇   ̇    

In this case (        ),  

   (    )√
   

  
 

                                                     (            (  ))√
           

       (  )
 

                                                    (                  )      
 

            
 

  The resulting state space model of linearized magnetic ball levitation CE152 around 

(   )  (              ) is: 
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[
 ̇ 
 ̇ 
 ̇ 

]  [
   

                         
             

]
⏟                            

 

[

  
  
  
]  [

 
 

           
]

⏟          
 

   ( )  

 

,   -  ,          -⏟            
 

[

  
  
  
]  , -⏟

 

   ( )                                                                       

 

Hence, from Eq.(4.2), transfer function expression  ( ) is given by (using MATLAB 

command window): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus  
 

 ( )  
                       

                                         
|
(   ) (              )

(    ) 

 

From Eq. (4.1), PID optimal parameters for   at center are used to obtain controller 

transfer function as following [25]: 

 

                     ( )     
  
 
     

   
        

 
                                            (    ) 

           ( )|(   ) (              )  
              

 
                                          (    ) 

 

Hence, from Figure (4.2) and using Eq.(4.24) and Eq.(4.26), closed loop transfer 

function expression  ( ) is given by (using MATLAB command window): 

 

 

 

 

 

 

 

 

 

>>A=[0,1,0;-15821.6191,-2.381,144.5962;0,0,-53493.0994]; 
>> B=[0;0;158714.0259]; 
>> C=[159.4921,0,0]; 
>> D=0; 
>> [num,den]=ss2tf(A,B,C,D); 
>> Ps=tf(num,den)                   % Plant 
  
Transfer function: 
          1.301e-008 s + 3.66e009 
------------------------------------------------------------- 
s^3 + 5.35e004 s^2 + 1.432e005 s + 8.463e008 

 

>> Cs=tf([0.2 1.3  3.2],[1 0]);   % PID Controller 
>> Gs=feedback(Cs*Ps,1) 
  
Transfer function: 
 3.903e-010 s^3 + 1.098e008 s^2 + 3.294e009 s + 4.319e010 
--------------------------------------------------------------------------------- 
s^4 + 5.35e004 s^3 + 1.1e008 s^2 + 4.141e009 s + 4.319e010 
  
>> step(0.5*Gs) 
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Figure (4.12): Output signal from linearized, tuned plant loop (approximately) 

 

 

Note that  using the statement "Gs=feedback(Cs*Ps,1)" is not exact equivalent for the 

loop in model shown in Figure (4.2) (cross product results in nonlinear expression in 

R,Y; so I ignore this inner loop, but unfortunately, its effects is not seen in the response 

shown in Figure (4.12). Hence, this response is not accurate, and another approach will 

be developed. 

 

 

 

4.7  Approximated Tuned Magnetic Ball Levitation CE152 

(Nonlinear System):  
 

 

As shown in previous section, when modeling the system via linearizing plant and 

approximating model (Figure (4.5)) results in a response nearly far from the original 

response, Figure (4.9). Hence, a need to obtain accurate equivalent model is necessary. 

One method to accomplish this, is to expect the total system that has the desired 

response.  

 

Target response is shown in Figure (4.10), notice that we can model it using second 

order prototype, Eq. (2.2) as following: 

 

                                   ( )          
  

 

            
                                           (    ) 

 

 

As seen in subsection (4.4.7), from Figure (4.9), system specifications are: 

 

                       = 0.7 sec,      = 5% 
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In order to obtain the transfer function, we need to translate the system specifications to 

     as following: 

                            √ 
(  (  )) 

(  (  ))    
                                                                (    ) 

 

                              
 

   
                                                                         (    ) 

 

Substituting Eq.(4.24) and Eq.(4.25) into Eq.(4.23), using MATLAB command 

window: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.13): Output signal of estimated tuned CE152 system 

>> OS=5; 
>> Ts=0.7; 
>> zeta=(-log(OS/100))/(sqrt(pi^2+log(OS/100)^2)); 
>> wn= 4/(zeta*Ts); 
>> num=wn^2; 
>> den=[1  2*zeta*wn  wn^2]; 
>> Gs_estimated=tf(num,den) 
Transfer function: 
       12 
--------------------- 
s^2 + 5 s + 12 
>> step(0.5*Gs_estimated) 
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Comparing Figure (4.13) with Figure (4.10),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4.14): Output signal of tuned CE152 system (red) and its estimation (blue)  

 

 

we notice that they are roughly the same, i.e. estimated tuned plant, Eq.(4.26), 

 

                                             ( )          
  

        
                                           (    ) 

 

is so accurate and coincides with the origin system. Hence, it will be used in following 

chapters as a linear mirror for the target system. 
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CHAPTER 5   RIPPLE-FREE DEADBEAT CONTROL 

 

The purpose of this chapter is to state useful definitions and used assumptions. In 

addition, a complete description for the problem of ripple-free deadbeat control is given. 

Also, the approach to solve this problem for linear and nonlinear systems is developed. 

 

5.1  Introduction 

Time delay, fast response without oscillation, disturbance attenuation, and tracking 

of a general reference input signal problems are considered here via Ripple-free 

Deadbeat control. 

Mathematical model of a physical system plays an important role in controller design. 

The synthesis of a controller is often based on the model of the system, therefore, the 

construction of an effective controller relies heavily on the accuracy of this model. 

Thus, the first step is to develop a method that makes it easier to understand and 

incorporate the model in the controller design procedure. Section 5.3 is designated for 

this aim. 

Time delays are frequently encountered in industrial processes. Time delays limit the 

achievable bandwidth and the allowed maximum. Also, time delays often significantly 

complicate the analysis and computation analysis in system design. Hence, for 

simplicity, time delay is assumed to be lumped and incorporated in system transfer 

function.  

Disturbances are undesirable inputs to the system. Disturbances may enter the system 

from many nodes such as actuators and sensors. The effect of disturbances on the 

system should be minimized using control. The error signal shows the degree of success 

in minimizing the effect of the disturbances on the system. 

Ripple-free deadbeat control can be solved by two approaches: Time Domain approach 

which solves the problem in state space setting (depends on minimum energy solution), 

and Polynomial approach which solves the problem in Transfer Function settings 

(depends on the solution of Diophantine equation), leading to optimization problem that 

deal with robustness and performance objectives. Nonlinear input-output map can be 

realized by polynomial model. Hence, the used approach in this thesis is the second one, 

whereas it can handle nonlinear systems with time delays, beside disturbances, all these 

details are included in the problem because Diophantine equation depends on the 

internal structure of the system.  
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The time optimal control problem (Deadbeat control) is defined as finding a finite 

control sequence such that the error sequence is short as possible. This often produces a 

violent transient response and may drive the system into saturation. To avoid this 

problem, a restriction is imposed on the amplitude of the control sequence at the 

expense of the settling time. The constrained time optimal control problem has many 

solutions. The polynomial approach can specify all stabilizing optimal control 

sequences, thus it is helpful to have an algorithm that finds the control sequence that 

satisfies all the constraints. 

 

5.2  Time-Delay Systems 

Systems with delays can be usually encountered in the real world. Time delay is defined 

as the required time between applying change in the input and notices its effect on the 

system output. When the system involves propagation and transmission of information 

or material, the delay is certain to occur. The presence of delays complicates the system 

analysis and the control design. 

In this thesis, delays will be lumped into a single delay in the feedback loop, 

representing delay in control action or delayed measurements.  

In continuous time-delay system, the delay is modeled by using Pad'e approximation 

approach. In discrete time-delay systems, a modified z-transform is used to model 

constant delays, which are expressed as non-integer multiples of the sampling periods. 

In the continuous-time system case, the delay is expressed as infinite dimensions
she

. In 

the discrete-time system case, finite dimensional 
hz 
can be considered as part of the 

system. The transfer function of a delay can be represented in M-file using transfer 

function expression " tf(numertator,denominator,'ioDelay',Td) " or using SIMULINK 

block shown in Figure (5.1). 

 

 

 

 

 

 

 

Figure (5.1): Time-Delay representation in SIMULINK models 
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5.3  System Formulation 

The approach considers a single-input, single-output (SISO), nonlinear continuous-

time plant. 

Deadbeat control problem is solved here by polynomial approach that requires the plant 

to be linear. Estimated equivalent linear plant in section 4.7 is improved to accomplish 

this requirement. 

Figure (5.2) shows the deadbeat controller C(z) for linear plant P(s), 

 

Figure (5.2): Closed loop control system 

Now, the plant is  assumed to be linear, minimal, and strictly proper, and having transfer 

function of the form: 

                                
 ( )

  ( )
 (     ) ( )  (     )

  ( )

  ( )
                                          (   ) 

where      is the value of the pure time delay of the system. The delay arise in a 

number of ways in continuous-time systems (e.g. a transport delay, communication 

delay etc.). It may also arises as a computational delay associated with the time required 

for the computer to calculate the control value based on the present data. Here,    is 

assumed to be lumped of all delay types that can be occurred in the system.  

Digital controller, Ripple-free Deadbeat controller C(z) is designed in computer, thus 

firstly a digital form of plant should obtained to be compatible with C(z), i.e. P(z). 

The delay element       can be defined in terms of    variable, where      , in order 

to simplify mathematical computations only. Hence, we can write the following transfer 

functions in q-domain (by replacing      by    , where n is integer number): 

o Plant:  

                                 
 ( )

  ( )
 
  ( )

  ( )
                                                                       (   ) 
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  where     ( ): is the plant numerator polynomial of     degree order,   ( )=0 

                  ( )  is the plant denominator polynomial of     degree order,   ( ) is 

assumed to be coprime (no common factors) with   ( ). 

o Reference signal: is assumed to be arbitrary and has the following 

representation: 

                                                ( )  
  ( )

  ( )
                                                                      (   ) 

  

 where   ( ) is assumed to be coprime with   ( ), and   is the order of   ( ). 

o Disturbance signal: is assumed to be arbitrary and has known representation: 

                                                ( )  
  ( )

  ( )
                                                                      (   ) 

 

 where   ( ) is assumed to be coprime with   ( ). 

o Tracking error,   ( ) is defined as: 

                                                    ( )   ( )   ( )                                                         (   ) 

 

o Control error,   ( ) is defined as: 

                                                    ( )   ( )   ( )                                                       (   ) 

 

 Definition 5.1 [26]: 

     The Ripple-Free Deadbeat Control (RFDBC) problem is defined as finding a 

controller  

                                ( )   
 ( )

  ( )
 
  ( )

  ( )
                                                                       (   ) 

where   ( ) and   ( ) are coprime and   ( )=1 (monic; to obtain a prototype transfer 

function form), such that: 

i. Closed-loop system is internally stable   no cancellations of unstable poles or 

zeros. 

ii. Tracking error settles to zero in   discrete steps     ( ) is a polynomial of   

degree at most. 

iii.  ( )  ( ) settle to their final form in   discrete steps    ( ) is a rational 

function whose poles are a subset of the poles of  ( ) and  ( ), and  ( ) is a 
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rational function whose poles are a subset of the poles of  ( ). It also implies 

that   ( ) and   ( ) are coprime. 

 

 

5.4  Approach to Solve Ripple-free Deadbeat Problem: 

The used deadbeat approach in this thesis depends on internal model principle. 

Internal model principle states that in order for a plant to track an input with steady state 

error, the internal forward-path must have a model of the input as a factor. Thus either 

the plant or the controller must have this as a factor in the denominator. 

Systematic steps is followed to complete the design, which are: 

1) Step1: Factor plant and reference transfer functions 

2) Step2: Obtain controller structure 

3) Step3: Solve Diophantine equation 

4) Step4: Optimize the solution of  Diophantine equation 

 

Step1:Factoring plant and reference transfer functions 

Factoring plant denominator polynomial and reference numerator polynomial into stable 

and unstable polynomial,  

                                 ( )      ( )   ( )                                                                       (   ) 

                                 ( )      ( )   ( )                                                                       (   ) 

Where: 

   ( )  plant denominator stable factors 

   ( )  plant denominator unstable factors 

   ( )  reference numerator stable factors 

   ( )  reference numerator unstable factors 

Note: In q-domain notation, stable factor means having a root outside the unit circle. 

Thus, it is important to compute system dynamics (poles) which contain plant, reference 

and disturbance signal poles. The approach depends on factoring these polynomials as 

following: 

                            ( )    ̃( ) ̃( ) ̃( ) ̃ ( )                                                            (    ) 

                            ( )    ̃( ) ̃( ) ̃( ) ̃ ( )                                                          (    ) 

                            ( )    ̃( ) ̃( ) ̃( ) ̃  ( )                                                        (    ) 
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  Where: 

o  ̃( ): a polynomial resulting from multiplying common roots between 

  ( )   ( )    ( )    

o  ̃( ): a polynomial resulting from multiplying common roots between 

  ( )   ( )  
o  ̃( ): a polynomial resulting from multiplying common roots between 

  ( )    ( )  

o  ̃( ): a polynomial resulting from multiplying common roots between 

  ( )    ( )  

 

Steps 2, 3 and 4: are discussed by details in the following sections as follows. 

 

5.5  Obtaining controller structure 

In a hybrid system, the necessary and sufficient conditions for the ripple-free continuous 

response are that: 

1) The continuous system is controllable with discrete input at period T, and 

2) The plant plus the Hold plus the Controller must have a continuous internal 

model of the reference input that is observable from the output, and  

3) The closed-loop system be internally stable 

 

5.5.1 Deadbeat Tracking Problem 

 
 Assumptions 5.1: 

 

i. Assume that   ( )     ( )        ( )   . This assumption will 

increase the settling time one sample for every additional pole in    ( ) but 

increases the accuracy of approach results 

ii. To assure that the plant will be able to track the desired input signal and 

reject the disturbance;   ( ) and   ( ) are assumed to be coprime. This 

means that plant transfer function has no transmission zeros.  

 

 

 Definition 5.2 [26]: Ripple-free Deadbeat Tracking Problem 

The Ripple-free deadbeat control problem has a solution if and only if the 

polynomials   ( ) and   ( ) coprime. Moreover, all solutions are of the form 

                                 ( )      ( )   ( )                                                                      (    ) 
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                                 ( )    ̃ ( )   ( )                                                                        (    ) 

  where    ( )        ( ) are polynomial solutions of the Diophantine equation  

                       [  ( )]   ( )   [ ̃ ( )   ( )]   ( )      ( )                           (    ) 

        such that   ( )     

 

 

 

 

Figure (5.3): Ripple-free deadbeat tracking model 

 

In order to provide ripple-free tracking, we should examine tracking error, control and 

output signals in q-domain as following: 

Output signal should track exactly reference signal after   steps at most. Output error 

must go to zero at finite number of steps. To obtain deadbeat (fastest) response, all poles 

should be at the origin, that's the denominator in q-domain equals one. The following 

equations illustrate these properties: 

 

o Tracking error signal calculation: 

From Eq.(5.5), 

   ( )   ( )   ( )                                                                                                    

       ( )   ( )  ,
 ( )   ( )

   ( )   ( )
-   ( )                                

                      ( ) ,  
 ( )   ( )

   ( )   ( )
-                                 

                        ( ) ,
   ( )   ( )   ( )   ( )

   ( )   ( )
-   ( ) {

 

   ( )   ( )
}        



www.manaraa.com

41 
 

                       
  ( )

  ( )

{
 
 

 
 

 

  
  ( )
  ( )

 
  ( )

  ( )}
 
 

 
 

 

                     
  ( )

  ( )
,

  ( )  ( )

  ( )  ( )    ( )  ( )
-                                                    (    ) 

 

o Control signal calculation: 

From Figure(5.3), 

                                                   ( )   ( )  ( )                                                           (    ) 

By substituting Eq.(5.7) and (5.16) into (5.17), 

                              ( )  
  ( )

  ( )
 
  ( )

  ( )
,

  ( )  ( )

  ( )  ( )    ( )  ( )
-                 (    ) 

                          ( )  
  ( )

  ( )
,

  ( )  ( )

  ( )  ( )    ( )  ( )
-                                 (    ) 

 

o Output signal calculation: 

From Figure(5.3), 

                                  ( )   ( ) ( )  
  ( )

  ( )
  ( )                                                 (    ) 

By substituting Eq.(5.19) into (5.20) 

                          ( )  
  ( )

  ( )
,

  ( )  ( )

  ( )  ( )    ( )  ( )
-                                 (    ) 

Substituting Eq.(5.13) and (5.14) into (5.21) results in: 

     ( )  
  ( )

  ( )
,

   ( )  ( )  ( )

 ̃ ( )   ( )  ( )     ( )  ( )  ( )
-                               (    ) 

 

From previous equation, Eq.(5.22): 

 Desired response  ( ), will be equal reference signal 
  ( )

  ( )
  ( Well Tracking ) if 

and only if  
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       {   ( )  ( )  ( )}  { ̃ ( )   ( )  ( )     ( )  ( )  ( )}          (    ) 

 Moreover, fastest response occurs when all z-domain poles are at the origin, this 

correspond to unity denominator in q-domain. This property happens if and only 

if the following condition satisfies, 

                { ̃ ( )   ( )  ( )     ( )  ( )  ( )}                                    (    ) 

           substituting Eq.(5.24) into (5.23) implies that: 

                                       ( )  ( )  ( )                                                                   (    ) 

            and hence,   ̃ ( )   ( )  ( )                                                                    (    ) 

 

o  Output signal examination: 

Substituting Eq.(5.24) and (5.25) into (5.22) implies that: 

                                    ( )  * +
  ( )

  ( )
                                                                         (    ) 

o Tracking error signal examination: 

Substituting Eq.(5.24) and (5.25) into (5.16) implies that: 

                                      ( )   
  ( )

  ( )
{
 

 
}                                                                  (    ) 

 

o Control signal examination: 

Substituting Eq.(5.24) and (5.25) into (5.19) implies that: 

  ( )  
  ( )

  ( )
,
  ( )  ( )

 
-  

  ( )   ( )   ( )  ( )

  ( )
 
  ( )  ( )   ( )

  ( )
   (    ) 

 

5.5.2  Deadbeat Disturbance Rejection Problem 

For Ripple-free deadbeat disturbance rejection problem, the following assumptions 

are also assumed to solve it.  

 Assumptions 5.2: 
i. Assume that   ( )     ( )        ( )   . This assumption will increase 

the settling time one sample for every additional pole in    ( ) but increases 

the accuracy of approach results 

ii.   ( )    ( ) are coprime 

iii.   ( )   ( ) are coprime. 
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 Theorem [27]: The Ripple-free Deadbeat Tracking and Disturbance 

rejection problem 

Figure (5.4): Ripple-free deadbeat disturbance rejection model 

 

The Ripple-free deadbeat tracking and disturbance rejection problem has a 

solution if and only if the polynomial    ( ) is coprime with both   ( ) and   ( ). 

Moreover, all solutions are of the form 

                           ( )      ( )   ( )    ( )                                                          (    ) 

                           ( )    ̃( ) ̃ ( ) ̃ ( )   ( )                                                        (    ) 

  where    ( )        ( ) are polynomial solutions of the Diophantine equation  

                   [  ( )]   ( )   [ ̃( ) ̃ ( ) ̃ ( )  ( )]   ( )                      (    ) 

 such that   ( )     

 

In order to provide ripple-free tracking and disturbance rejection, tracking property is 

proved previously. Disturbance property is proved alone by applying superposition 

principle, assuming zero reference signal (   )  we should examine control error, 

control and output signals in q-domain as following: 

Control error signal should eliminate disturbance after finite number of steps. Output 

signal also must go to zero after   steps at most. To obtain deadbeat (fastest) response, 

all poles should be at the origin, that's the denominator of output in q-domain equals 

one. The following equations illustrate these properties: 
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o Control error signal calculation: 

From Eq.(5.6) and Figure(5.4), 

   ( )   ( )   ( )                                                             

  ( )   ( )  ( )                                      

                                       ( )   ( )  ( )  ( )                                                        

                                      
 ( )

   ( )   ( )
                                                                                 

                             ,
  ( )  ( )

  ( )  ( )    ( )  ( )
- 
  ( )

  ( )
                                         (    ) 

                       ( )   ,
 ̃ ( )  ( )   ( )

 ̃ ( ) ̃ ( )  ( )   ( )    ( )  ( )
-   ( )        (    ) 

               where  ̃( )    

 

o Control signal calculation: 

From Figure(5.4), 

           ( )   ( ) ( )   ( ) ( )  ( )                                                                 (    ) 

By substituting Eq.(5.33) into (5.35), 

                     ( )  
  ( )

  ( )
 
  ( )

  ( )
,

  ( )  ( )

  ( )  ( )   ( )  ( )
- 
  ( )

  ( )
                     (    ) 

By substituting Eq.(5.30), (5.31) into (5.36), 

             ( )  ,
  ( )   ( )

 ̃ ( ) ̃ ( )  ( )   ( )    ( )   ( )
- 
  ( )

  ( )
                  (    ) 

 

o Output signal calculation: 

From Figure(5.4), 

                                    ( )   ( )  ( )  
  ( )

  ( )
  ( )                                            (    ) 

By substituting Eq.(5.34) into (5.38) 

          ( )  
  ( )

  ( )
,

 ̃( ) ̃ ( ) ̃ ( )  ( )   ( )

 ̃ ( ) ̃ ( )  ( )   ( )    ( )  ( )
- 
  ( )

  ( )
          (    ) 
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              ( )    ( )  ( ) ,
 ̃ ( )   ( )

 ̃ ( ) ̃ ( )  ( )   ( )    ( )  ( )
-           (    ) 

 From Eq.(5.34), Control error signal equal      signal  ( Well Disturbance 

rejection ) if and only if  

                                   ̃ ( )  ( )   ( )                                                          (    ) 

 Moreover, from Eq.(5.40), fastest response occurs when all z-domain poles are 

at the origin (s-domain poles are at infinity since       ), this correspond to 

unity denominator in q-domain. This property happens if and only if the 

following condition satisfies, 

                 { ̃ ( ) ̃ ( )  ( )   ( )    ( )  ( )}                                    (    ) 

           substituting Eq.(5.41) into (5.42) implies that: 

                                               ( )  ( )                                                                       (    ) 

 

o Error signal examination: 

Substituting Eq. (5.42) into (5.34) implies that: 

     ( )   ,
 ̃ ( )  ( )   ( )

 ̃ ( ) ̃ ( )  ( )   ( )    ( )  ( )
-   ( ) 

 

 ,
 ̃ ( )  ( )   ( )

 
-   ( )                      

    

                                       ̃ ( )  ( )   ( )  ( )                                          (    ) 

  

Previous equation, Eq. (5.44), implies that the error signal function is a polynomial 

which vanishes to zero after finite steps, which equal the order of this polynomial. 

 

o Output signal examination: 

     Substituting Eq. (5.42) into (5.40) implies that: 

      ( )    ( )  ( ) ,
 ̃ ( )   ( )

 
-          

                                         ( )    ( )  ( ) ̃ ( )   ( )                                         (    ) 

A polynomial approaches to zero after finite steps 

Combining results obtained from previous manipulations, the system will to settle, 

reject disturbance and  eliminate the error within the smallest time. 
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5.6  Solving Diophantine Equation 

At this moment, we can find the controller transfer function by solving 

Diophantine equation, i.e. compute the unknowns,   ( ) and   ( ) in Eq. (5.32) 

systemically as following steps: 

 
1. For simplicity, rewrite Eq. (5.32) as 

 

                                           ( )   ( )   ( )   ( )                                          (    ) 

       where  

                                                      ( )    ( )                                                

            and 

  ( )   ̃( ) ̃ ( ) ̃ ( )  ( ) 

It is clear that in order to compute  ( ) and  ( ), we need to factorize plant,      

reference and disturbance transfer functions as stated in section (5.4). Then, we 

can easily evaluate      ( ( ))      ( ( )). 

2. Evaluate the minimum order of   ( ) and   ( ) from the relation: 

 
                   ( )       ( )     *     ( ( ))      ( ( ))+            (    ) 

                                      ( )             ( )    

3. Assume two polynomials   ( ) and   ( ) with unknown coefficients, and of 

degree computed from Eq. (5.47). 

 

4. After processing the previous three steps, now Diophantine equation; Eq. 

(5.46) has at most *  (             (    )   )+ unknowns which 

evaluated from equating terms of similar degrees in the two sides of Eq. (5.46). 

As the number of unknown coefficients increases, manipulation complexity is 

also increases. Hence, M-file function is programmed to simplify computations 

as shown in Appendix A. 

 

5. Substituting   ( )   ( ) in Eq. (5.30) and Eq.(5.31) respectively,  obtain the 

Ripple-free deadbeat controller is found via Eq. (5.7). 

    

 

 

5.7  Optimizing the Solution of Diophantine Equation 

Noticing Diophantine equation, it has an infinite number of solutions that all 

provide an internally stabilizing controller. Hence, an optimization is needed. Such 

parameters to be optimized are as settling time, control signal magnitude. A tradeoff is 

needed between them. Control power shouldn’t be ignored in real application, hence if 

the infinity  norm of control signal is larger than acceptable value, we must 

compute reliable one.  



www.manaraa.com

47 
 

The importance of the sampling period selection in the deadbeat controller design is 

clear. In many real life problem, the sampled closed-loop step responses have 

intersample oscillations cannot be avoided completely with previous approach. To 

avoid intersample oscillations, we maintain the control variable restricted or 

minimized, but this is achieved at the expense of obtaining minimum settling time. 

This section is designated for this option [25]. 

 

To accomplish this purpose, we examine control signal equation, Eq. (5.29), 

 

                                           ( )  
  ( )  ( )   ( )

  ( )
                                                       (    ) 

 

The control signal will depend only on denominator of plant, numerator and 

denominator of the reference signal, and the obtained polynomial   ( ), so to 

minimize the absolute value of control signal;  ( )  it can be done by minimizing 

the numerator,   ( )  by evaluating another polynomial instead of previous   ( ). 
The following procedure illustrates this task. Let us called the previous    ( )  

by      ( ), 

 

Adding and subtracting the term *  ( ) ( ) ( ) + from Eq.(5.46), where 

 ( )                                      , results in: 

            ( )  ( )   ( )   ( )    ( ) ( ) ( )    ( ) ( ) ( )                   

       ( ) *      ( )   ( ) ( )+⏟                
     ( )

  ( ) *      ( )   ( ) ( )+⏟                
     ( )

        (    ) 

               ( )        ( )   ( ) ( )                                                                (    ) 

                  ( )        ( )   ( ) ( )                                                                (    ) 

 And hence by substituting Eq.(5.49) into Eq.(5.29), 

                ( )  
  ( )  ( )  *     ( )   ( ) ( )+

  ( )
                                     (    ) 

It's obvious that minimizing the term *     ( )   ( ) ( )+ will also minimizes 

control signal magnitude,  ( )  One approach and the simplest way to do this, is by 

equating it by zero, that’s  

                             ( )   ( ) ( )                                                                         (    ) 

  where      ( ) has known parameters from previous section;  ( ) also has known 

parameters results from plant, reference and disturbance factorization; and  ( ) is the 

unknown polynomial which should be computed. This is done by following steps: 

1. Assume optional order for the polynomial  ( )  Then  ( ) now is a 

polynomial of (order+1) unknown coefficients. 
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2. Now Eq. (5.52) has only  ( ) unknowns which evaluated from equating terms 

of similar degrees in the two sides of Eq. (5.52). This step as the same as 

evaluating   ( ) in Diophantine equation (5.46) and hence the developed 

function in section (5.6) can be used to find the unknowns. 

  

3. Notice that the order of control signal is now increased and hence the settling 

time increases at the expense of minimum control magnitude. 

 

4. The same procedure is followed to evaluate      ( ) 

 

5. Substituting      ( )      ( ) in Eq. (5.48), Diophantine equation is 

evaluated to obtain the controller, Eq. (5.7). 
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CHAPTER 6   SIMULATION AND RESULTS 

 

This chapter demonstrates the design methods that have been developed in the two 

previous chapters. MATLAB is used to perform the calculations, Simulink Design 

Optimization™  is used to perform PID optimization and SIMULINK for virtual 

simulation. The M-file codes that are used in obtaining the solutions of the examples are 

given in appendix A. Section 6.1 discusses designing PID controller for Magnetic ball 

levitation CE152 to solve stability and performance issues, and then evaluating second 

order estimation for the design. The results of section 6.1 is used in section 6.2 to 

evaluate a ripple-free deadbeat  control for SIMULINK model of magnetic ball 

levitation CE152 with presence of time-delay and disturbance. Finally, section 6.3 

compares between the results of this thesis approach and the results of other previous 

studies such as Elaydi [27] and Elammassie [11] results. 

 

6.1  Magnetic Ball Levitation CE152 

In this section, second order estimation transfer function of magnetic ball 

levitation CE152 will be simulated.   
 

Following the procedure covered in Chapter 4, Stability and performance problem 

of the magnetic ball levitation are solved using PID controller optimization,  as 

shown in Figure (6.1), with                        

 

 

 

 

 

 

Figure (6.1): Model of maglev CE152 with PID controller 
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The step response of the magnetic Ball levitation with PID controller is shown in Figure 
(6.2). 

 
                   

 

 

 

 

 

 

 

 

 

 
 

Figure  (6.2):  Step response of maglev CE152 with PID controller 

Figure (6.2) shows that      = 0.2 sec,          = 0.7 sec,      = 5%. 

As done in section (4.7), we have obtained a linear plant transfer function with certain 

specifications by estimating the step response of the magnetic Ball levitation with PID 

controller shown in Figure (6.2) as stated in Eq. (4.25), that's  

                                             ( )  
  

        
                          

with          = 0.7 sec,      = 5% .To ensure that this system behaves in a similar 

manner as our original system, their step responses are shown in the same figure, Figure 

(6.3) and (6.4) 

 

 

 
 

Figure (6.3):  Maglev CE152 with PID controller and its second order estimation 
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Figure (6.4):  Step response of maglev CE152 with PID controller and the estimated 

model 

Thus, the two responses are nearly the same, so this model will be used to design the 

deadbeat controller for the magnetic ball levitation. 

 

6.2  Ripple-free Deadbeat Controller for Magnetic Ball Levitation 

CE152 

 

Magnetic ball Levitation CE152 is chosen as a case study for nonlinear systems, 

since this apparatus is placed at IUG laboratory. 

 

Consider this SISO continuous time plant with a time delay,     Ripple-free deadbeat 

control is desired to track a reference signal,  ( )  in the presence of a disturbance 

signal,  ( )  It is desired to be used to meet certain specifications such as rising time 

(or settling time), steady state error and overshoot. 

Many cases should be considered here, such as: 

  

o Developing the controller without restrictions on control magnitude, the 

corresponding case is with restriction 

o In both cases reference signal could have arbitrary form such as step, 

sinusoidal,…etc. 

o In the presence of disturbance, controller performance should be examined 

developed by definition 5.1 and theorem 5.1 respectively 

o Is the developed controller capable of time-delay handling? 
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6.2.1 Tracking problem without restriction on control signal 

magnitude 

 

Case 1:                  ( )                                     

Deadbeat controller for magnetic ball levitation with PID controller will be found by 

evaluating deadbeat controller for its estimated model, thus deadbeat controller will 

be found for   ( )          to follow reference signal  ( )      (         )  

 ( )  
   

 
. Consider also a time-delay,              

 

 

Solution: Assume that the sampling time is          
 

 Using MATLAB code, Convert plant transfer function from          to 

          then from          to           then factorize  ( ) to 

numerator and denominator, also find denominator roots as following 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Repeat step1 for reference transfer function, 

 
 

 

 

 

 

 

                              0.00043605 (z+0.9688) 
P(z)= z^(-3) * ------------------------------ 
                                (z-0.9894) (z-0.9191) 
 
               0.0004225 q^2 + 0.000436 q 
P(q)= --------------------------------------- 
                 0.9094 q^2 - 1.909 q + 1  
 
Np(q)= 0.0004225 q^2 + 0.000436 q 
 

Dp(q)= 0.9094 q^2 - 1.909 q + 1 
 

Dpq_root = 

    1.0880 

    1.0107 

           0.005 

R(z)= ------ 
            (z-1) 
  
           -0.005 q 
R(q)= ---------- 
             q - 1 
  
Nr(q) =0.0050q 
 

Dr(q) = -q+1 
 

Drq_root =  1 
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 Factorize plant and reference denominators as stated in Eq. (5.10) and (5.11), 

depending on denominator roots computed above, this results in: 

 

 ̃( )      ̃( )          

    ̃ ( )    ( )   ̃  ( )     ( )  ̃ ( )    ( ) 

 Forming  ( ) and  ( ) as defined in Eq. (5.46), hence  ( )    ( )  ( )  

  ( )  ( ), thus 

 
 

 

 

 
 
 

 Evaluate the minimum order of   ( )       ( ) from Eq. (5.47), thus 

  

                   ( )       ( )     *      +       

 

 Defining two polynomials   ( )       ( )  each with order equal 2 and total 

unknown coefficients equal 6.  
  

 

 

 

 By substituting  ( )  ( )   ( )       ( ) into Diophantine equation Eq. 

(5.46) 

  

 (                       )(           )  (                  
                 )(           )       

 

       (        )   (                       )   (                

                       )   (                          

       )   (                 )  ( )    

 

Now solve unknowns by making all coefficients of previous equation equal zero as 

following: 

beta =   -0.9094 q^3+ 2.8179 q^2  -2.9085 q+ 1.0000  
 

alpha =  0.0004225 q^2 + 0.000436 q 

 

𝑄𝑛(𝑞) =  a  q^2  + b q + c  
 

 𝑄𝑑(𝑞) =  d q^2  + e q + f 
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[
 
 
 
 
 

 
      
      
 
 
 

  

 
 

      
      
 
 

  

 
 
 

      
      
 

  

       
      
       

 
 
 

  

 
        
      
       

 
 

  

 
 

       
      
       

 

     

]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

      

By using MATLAB function (pinv) and the developed code to compute the product, we 

obtain: 

     

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

 

[
 
 
 
 
 

 
      
      
 
 
 

  

 
 

      
      
 
 

  

 
 
 

      
      
 

  

       
      
       

 
 
 

  

 
        
      
       

 
 

  

 
 

       
      
       

 

     

]
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 

      

 

    

 

 

                                           

 

 Substituting   ( )   ( ) in Eq. (5.30) and Eq.(5.31) respectively to obtain 

the Ripple-free deadbeat controller Eq. (5.7). 

 

          ( )     ( )    ( )     ( )  ( )   ( )           

 
 
 

 

 

Hence,  

 ( )   
                    

                 
 

 

SIMULINK model for the plant for case 1 and case 2 is shown in Figure (6.5). Step 

response of the system with and without the controller is shown in Figure (6.6). Time 

response specifications are summarized in Table (6.1). 

 

 

 

 𝑄𝑛(𝑞) =         ^                    
 

  𝑄𝑑(𝑞) =               
 

 𝑁𝑐(𝑞) =         ^                    
 

  𝐷𝑐(𝑞) =                            
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Figure (6.5): Maglev CE152 with PID, without and with deadbeat controller (Case 1 and Case2)  
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Figure (6.6):  Step response of Maglev CE152 with PID, without and with deadbeat 

controller (Case 1) 

 

 

Table (6.1): Time response specification summarization of Figure (6.6) 

 

 

From Figure (6.6) and Table (6.1), a clear minimization for the settling time is achieved, 

but surly this on the expense of larger system overshoot. There is a delay of 0.03, hence, 

approximately, the settling time is after 0.03+(4*0.1)   0.43 sec.  

 

 

6.2.2 Tracking problem with restriction on control signal 

magnitude 

 

Case 2:                ( )                                       

Following the procedure developed in section 5.7, and repeating previous steps, we 

obtain the following results: 

Figure (6.6) Without controller (Blue) With controller, Case 1 (Red) 

Overshoot  5% 15% 

Rising time 0.2 0.15 

     - 4 steps 

Sampling time 0.1 0.1 

Delay time 0 0.03 

Settling time 0.7 0.43 
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 Suppose that the length of the vector  ( )       , i.e. settling time will 

increase by three steps,                   

        ( )                                                        

  Hence,  

 ( )   
                                                 

                                            
 

 

SIMULINK model of the plant for case 2 is shown in Figure (6.5). Step response of the 

system with and without the controller is shown in Figure (6.7). Time response 

specifications are summarized in Table (6.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.7):  Step response of Maglev CE152 with PID, with and without deadbeat 

controller(Case 2) 

 

 

Table (6.2): Time response specification summarization of Figure (6.7) 

 

 

Figure (6.7) Without controller (Red) With controller, Case 2 (Blue) 

Overshoot  5% 12% 

Rising time 0.2 0.15 

     - 6 steps 

Sampling time 0.1 0.1 

Delay time 0 0.01 

Settling time 0.7 0.61 
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From Figure (6.7) and Table (6.2), the control signal magnitude (and thus the system 

overshoot) is minimized, but this occurs at the expense of settling time. Approximately, 

settling time is after 0.01+( 6*0.1)   0.61 sec. 

To compare between the performance of the system without deadbeat controller and 

with two deadbeat controllers (Case1 and Case2), their responses are plotted 

simultaneously at Figure (6.8), and time response specifications are summarized in 

Table (6.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.8):  Step response of Maglev CE152 with PID, without and with deadbeat 

controller (Case1, Case2) 

 

 

Table (6.3): Time response specification summarization of Figure (6.8) 

 

 

 

6.2.3 Significance of Results (6.1): 

 

Thus we conclude from Figure (6.8) and Table (6.3) that the developed two controllers 

Figure (6.8) 
 
 
 

Without Deadbeat 
controller 

 (Red) 

With Deadbeat 
controller, Case 1 

(Pink) 

With Deadbeat 
controller,  

Case 2 (Blue) 

Overshoot  5% 15% 12% 

Rising time 0.2 0.15 0.15 

     - 4 steps 6 steps 

Sampling time 0.1 0.1 0.1 

Delay time 0 0.03 0.01 

Settling time 0.7 0.43 
 

0.61 
 



www.manaraa.com

59 
 

for a plant with certain overshoot and settling time result in the following 

improvements: 

 

1) After applying the PID controller, the time response is behaved but a still need 

to minimize the settling time is required. Also, note that after applying this 

controller, a time delay in the response is happened which added to the total 

resulting settling time. 

 

2) After applying the PID controller, and the Ripple-free Deadbeat controller and 

without any optimization on control signal amplitude, Case1, we really obtain a 

clear minimization of the settling time at the expense of having higher 

overshoot. 

 

3) After applying the PID controller, and the Ripple-free Deadbeat controller but 

with optimization for the control signal amplitude, Case2, we really obtain a 

clear minimization on the overshoot (resulting from minimization of the control 

signal magnitude) but surly this is at the expense of having longer settling step 

time over than previous case that results from the added optimization vector 

 ( ). The settling step time is increased by the order of  ( ). 
 

4) The controller is capable of time delay handling. 

 

 

6.2.4 Disturbance rejection problem without restriction on control 

signal magnitude 

 

Case 3: Without input, With disturbance  ( )        (  )   Without Control 

signal optimization 

Repeating the same steps done in case 1 as following: 

 

 Disturbance model and factorization: 

 

 

 

 

 

 

 

 

 

 

 

 

              0.00099667 (z+1) 
W(z)= ------------------------ 
              (z^2 - 1.96z + 1) 
  
             0.0009967 q^2 + 0.0009967 q 
W(q)= -------------------------------------- 
                  q^2 - 1.96 q + 1 
 
Nw(q) = 0.0009967 q^2 + 0.0009967 q 
 

Dw(q) = q^2 - 1.96 q + 1 
 

Dwq_root = 
   0.9801 + 0.1987i 
   0.9801 - 0.1987i 
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  

    ̃ ( )       ̃( )      ̃( )     ̃( )            
    ̃ ( )    ( )   ̃  ( )     ( )  ̃ ( )    ( )  

    ( )     ( )    ( )     ( )  ( )   ( )           
 

 Forming  ( ) and  ( ) where  ( )    ( )  ( )    ( )  ( )  ( ), 
thus 

 

 

 
 

 

 

 

 Evaluating the minimum order of   ( )       ( ) from Eq. (5.47), thus 

  

                   ( )       ( )     *      +       

 Defining two polynomials   ( )       ( ) with order equal '4' and '10' 

unknown coefficients  
  

 

 

 By substituting  ( )  ( )   ( )       ( ) into Diophantine equation Eq. 

(5.46) using MATLAB code, we obtain 

 

                           

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 ]
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
       
        
        
         
       

 
 
 

      
 ]

 
 
 
 
 
 
 
 
 

      

          and hence 

 

 

 

 

beta =  -0.6065 q^5 +3.3084 q^4 -7.2742 q^3 + 8.0454  q^2  -4.4732 q+ 1.0000  
 

alpha =  0.0429 q^2 + 0.0506 q 

 

𝑄𝑛(𝑞) =  a  q^4  + b q^3  + c q^2  + d q + e  
 

𝑄𝑑(𝑞) =  f  q^4  + g q^3  + h q^2  + k q + l 
 q + l 

𝑄𝑛(𝑞) =  11.6562  q^4  -63.2025 q^3  + 137.2813 q^2  - 147.1052 q + 72.0658  
 

𝑄𝑑(𝑞) =  0.8235 q^2  + 1 
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and  

 
 
 
 
 

 

Hence,  

 ( )   
       ^          ^           ^                   

        ^           ^                          
 

 

SIMULINK model of the plant for case 3 is shown in Figure (6.9). Step response of the 

system with and without the controller is shown in Figure (6.10). Time response 

specifications are summarized in Table (6.4). 

 

 
 

Figure (6.10): Step response of Maglev CE152 with PID, without and with deadbeat 

disturbance rejection controller (Case 3) 

 

 

 

 

 

 

 

 

 

 

 𝑁𝑐(𝑞) =         ^          ^           ^                    
 

  𝐷𝑐(𝑞) =          ^           ^                     𝑞     
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Figure (6.9):  Maglev CE152 with PID,  without and with deadbeat disturbance rejection controller (Case 3)  

(Note: numerator of the controller is modified by a scaling factor (0.2) to limit saturations) 
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0.1

Setpoint Offset2

0

Setpoint Offset1

Disturbance Signal

z  -2.137z  +0.5223z  +1.438z-0.82354 3 2

0.2*[-72.07  147.1  -137.3  63.2  -11.66]
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Transfer Fcn2

In Out

Coordinates

Transformation3
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Coordinates
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PID

Controller3

PID

Controller1

In1 Out1

Control Signal Scaling3

In1 Out1

Control Signal Scaling1



www.manaraa.com

63 
 

Table (6.4): Time response specification summarization of Figure (6.10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure (6.10) and Table (6.4), a clear elimination of pure disturbance problem is 

achieved within nearly 0.03+(5*0.1)=0.53   0.5 sec and hence time is deadbeat also.  

 

 

6.2.5 Disturbance Rejection problem with restriction on control 

signal magnitude 

 

Case 4: Without input, With disturbance  ( )        (  )   With Control 

signal optimization 

Following the procedure developed in section 5.7, and repeating steps done in section 

6.2.2, we can obtain the controller with restriction on control signal magnitude. Since 

this method applies longer settling time, it is not applied on this system in order to not 

increasing the settling time more than 0.5 sec. Also, here, overshoot is not important as 

in tracking problem so it hasn’t been simulated. But if one want to apply it, it is 

straightforward as in section 6.2.2 as stated and surly overshoot will decreased at the 

expense of settling time. 

 

6.2.6 Significance of Results (6.2): 

 

Thus we conclude from Figure (6.10) and Table (6.4) that the developed disturbance 

rejection deadbeat controller results in the following improvements: 

 

Purely disturbance rejection problem is achieved in minimum settling time. A problem 

of input tracking and disturbance rejection problem are simultaneously solved as in 

section 6.3.2 

 

 

Figure (6.10) 
 
 
 

Without Disturbance 
rejection deadbeat 

controller 
 (Red) 

With Deadbeat 
controller, Case 1 

(Blue) 

Overshoot  25% 10% 

Rising time 0.5 0.4 

     - 5 steps 

Sampling time 0.1 0.1 

Delay time 0 0.03 

Settling time 1 0.5 
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Zero-Order

Hold

Transport

Delay

50

s  +s+12

Transfer FcnStep

Signal

Generator

Scope

z  -0.6495z  +0.6209z  -0.3546z-0.046184 3 2

0.0001*[6.469 -9.116 8.138 -4.527 1.139]

Discrete

Transfer Fcn

6.3  Improving Deadbeat Controller for Linear Systems 

 
In this section, results obtained via this thesis approach are compared with that 

obtained in some references such as [11] and [27]. 

 

6.3.1 Example (1) 
 

The system that is given in [27] and is shown in equation (6.1) is considered. It is 

desired to track a unit step signal in the presence of a sinusoidal signal as disturbance, 

 ( )  It is desired to control this plant with ripple-free deadbeat manner. The plant is 

 

                                                 ( )  
         

      
                                                       (   ) 

 

and the disturbance is  

 

 ( )     (       ) 
 

It is desired to minimize the overshoot. 

 

 

Repeating the same steps done in previous section we have the controller : 

 

 

 ( )   
       ^           ^           ^                  

                                            
 

 

 

  

 

 

 

 

Figure (6.11):  System in Example (1) with deadbeat controller  

 

 

and a step response shown in Figure (6.12): 
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Figure (6.12): Step response of the system under disturbance and time-delay after 

applying deadbeat tracking and disturbance rejection controller 

 

Comparing this figure with that in [27, page 119]: 

 Table(6.5): Comparison between Elaydi [27], this thesis results 

 

we notice that disturbance rejection is achieved here with overshoot=10% is less than 

20% obtained in [27] at the same settling time = 7 sec. Also, this response is achieved 

by a controller of order 4 which is less than order 5 used in [27]. Thus, the deadbeat 

problem in this thesis is achieved with less both overshoot and controller order 

structure. Moreover, this approach can deal nonlinear systems. 

 

6.3.2 Example (2) 
 

The system that is given in [11] and is shown in equation (6.2) is considered.  

 

                                                   ( )  
         

       
                                                   (   ) 

 

It is desired to track the sinusoid signal 

  

 ( )     (       ) 
 

with ripple-free deadbeat manner and minimizes the infinity norm of control energy. 

Let the sampling time = 0.1 sec and vector  ( ) length is 3. 

 Overshoot Controller order Settling time 

Elaydi [27] 20% 5 7 sec 

This thesis 10% 4 7 sec 
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Repeating the steps done in previous section, then we have: 

 

 Decreasing control signal using equation (5.51), we obtain 

 

 ( )                                     
 

                                          
 

where the vector obtained in [11, page 64] is 

 

 ( )                                     
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6.13): Time response of vector v(q) which was produced by thesis 

approach. 

 

Figure (6.13) is a result of M-file code given in appendix A. Figure (6.13)  shows  

control,  and  output  signals which settled after 10 sampling times with overshoot 

= 38.68%, settling time = 10*0.1=1sec. 
 

Results of step responses to the system using Elammassie approach [11, page 65] 

and the developed approach in this thesis are summarized in Table (6.5) 
 

 
 

 Table(6.6): Comparison between Elammassei [11], this thesis results 
 

Vector Norm(u,inf) Norm(E,inf) Norm(E,2) Overshoot Settling time 

Elammassei app. 
appraoch 

1.8764 2.4491 4.0026 35.79% 1 sec 

My app. 0.4018 0.6545 0.8761 38.68% 1 sec 
 

 

For the same settling time, the controller design based on thesis approach have  

minimum  infinity  norm  of  control  signal,  minimum  2-norm,  and  minimum 

infinity-norm of the error signal. 
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CHAPTER 7 CONCLUSION 

 

 

Rapid advances in control theory have led to a rapid development in digital 

control systems. Practically, every aspect of our day-to-day activities is affected by 

some type of digital control. Deadbeat controller is a type of digital controllers, which 

offers the fastest settling time. Therefore, deadbeat controller ensures that the error 

sequence vanishes at the sampling instants after a finite time. Moreover, real plants and 

processes are typically nonlinear which are mostly affected by external disturbances 

and time-delays.  

 

There is a wide area of applications for control systems, where nonlinear phenomena 

cannot be avoided. Therefore, control of nonlinear systems is an important area of 

control engineering. Many processes is required to settle in minimum period, which is 

called in control system deadbeat systems Time-delay systems are unavoidable in many 

control systems. Hence, a strong need to deal with them is exist. A desire to develop 

new disturbance rejection methodologies that are simpler and more robust than existing 

methodologies is needed. This issue as a whole was never dealt with before; thus, this 

thesis proposed a complete solution using an effective methodology.  

 

Thus, in this thesis, the following contribution was made in the field of ripple-free 

deadbeat controllers for nonlinear systems. Constrained controllers are obtained that 

satisfy the properties of internal stability, performance, tracking of arbitrary references 

and attenuation of known disturbances. The thesis approach can also handle systems 

with time delays.  

 

This thesis presented an approach for the ripple-free deadbeat controller for nonlinear 

system in order to track random input signal in presence of time delays and known 

disturbance signals via tuning PID controller and solving Diophantine equation. The 

control approach has many aims such as: designing Ripple-free deadbeat controller that 

achieve good transient response in presence of time-delay for nonlinear system which 

makes the output signal y to track any random input signal with zero steady-state error 

in the smallest number of sampling instants; tuning PID controller; solving time-delayed 

nonlinear control problem under disturbance using ripple-free deadbeat controller; 

studying the effect of time-delays and disturbances on the stability and performance; 

and finally realizing the developed controller using MATLAB software Toolbox. 
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The control methodology combined two controllers to  control nonlinear systems, PID 

controller and Diophantine equation which depended on Polynomial approach. These 

two feedbacks were used to stabilize the nonlinear system and to make the response 

of the nonlinear system closely tracking the reference signal. The Diophantine 

equation depends on the internal model principle that was utilized to track a 

reference and reject disturbance dynamics for a  plant with time delays. The results 

shown that, the response of nonlinear system tracked the reference signal with zero 

steady state after very small rising time.  
 
 

A systematic method for the design of a controller that can track arbitrary reference 

input signal and reject a known disturbance was described. The models of the reference 

and disturbance signals were included in the Diophantine design equation. 

The system was assumed to be nonlinear plant. In order to handle nonlinearities and 

saturations, a PID control tuning using Simulink Design Optimization™ software was 

applied, the resulting well behaved response was estimated as a linear second order 

transfer function which dealt directly with Diophantine polynomial approach. The 

approach can handle systems with time delays, where the time delay is not an integer 

multiple of the sampling time. The approach also dealt with disturbances, where the 

disturbance signal is assumed to be of a known linear form. A method for designing 

ripple-free deadbeat controller was developed. The controller allowed for minimizing 

the settling time and control signal magnitude. 

 

The proposed controller was applied using SIMULINK model of magnetic ball 

levitation CE 152 as a case study for nonlinear systems, simulation results shown 

that the controller performed fine with simulated plant. Simulation results showed that 

the output signal exactly tracked the input signal and reject the disturbance signal in 

short settling time. The time domain specification for the output  signal,  control   

signal,  and  error  signal  were  computed  and  satisfied  the requirement and 

constraints. A time delay was also presented with simulation and was solved by using 

deadbeat controller based on solving Diophantine equation parameters. 

 

Further directions for research include considering deadbeat nonlinear control method 

without using separated linearizing controller. Also, the general tracking problem for 

systems with multiple time delays, where the delays could show up anywhere in the 

system could be investigated. Moreover, the  effect of changing working points, 

changing the sampling time, and changing the frequency of input and disturbance 

signals can be also studied. 
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APPENDIX A  MATLAB M-FILE CODES 

 

a. MATLAB main code 

 

This code uses many user defined functions which attached on the thesis CD 

 

clear all  
close all 
clc 
T=0.01; 
%% Plant information 
Ps=tf([12],[1 5 12],'iodelay',0.025)   %% plant in s-domain 
c2d(Ps,T) 
Pz=zpk(c2d(Ps,T)) 
[Npz Dpz]=tfdata(Pz,'v')   %% plant in z-domain 
Pq  = SQs( Ps,T ) 
[Npq Dpq]=tfdata(Pq,'v')    %% plant in q-domain 
Dpq_root=roots(Dpq) 
Dpq=removeZeros(Dpq) 
OrderP=length(Dpq)-1        %% plant order 
%% Reference information 
Rs=tf([0.5],[1 0])          %% Reference signal in s-domain 
Rs=zpk(Rs) 
Rz=zpk(c2d(Rs,T)) 
[Nrz Drz]=tfdata(Rz,'v')    %% Reference signal in z-domain 
Rq=SQs(Rs,T) 
[Nrq Drq]=tfdata(Rq,'v')    %% Reference signal in q-domain 
Drq_root=roots(Drq) 
%% Symbolized plant and reference signals by variable x instead of q 
Dp_sym=poly2sym(Dpq); 
Dr_sym=poly2sym(Drq); 
%% Solving Diophantine by computing polynomials Qn, Qd 
DrqdotDpq_sym=Dp_sym*Dr_sym; 
DrqdotDpq=sym2poly(DrqdotDpq_sym); 
alpha=Npq 
beta=DrqdotDpq 
alpha_sym=poly2sym(alpha); 
beta_sym=poly2sym(beta) 
[MOQnQd]=Mini(alpha,beta) 
[Qn_sym Qd_sym]=QnQdsym(MOQnQd) 
DE=(collect(simplify((alpha_sym *Qn_sym)+(beta_sym*Qd_sym))-1)) 
[COs CO0 order]=COPs(DE) 
[VB ConsK]=getVBs(COs,CO0,order) 
QnQd=pinv(VB)*ConsK 
Qn=QnQd(1:1:MOQnQd+1) 
Qd=QnQd(MOQnQd+2:1:2*MOQnQd+2) 
Qn_q=tf(Qn',1,T,'variable','q') 
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Qd_q=tf(Qd',1,T,'variable','q') 
%% Check if the Diophantine equations are OK or  not 
[Qn,DQn]=tfdata(Qn_q,'v')  
[Qd,DQd]=tfdata(Qd_q,'v')  
DC=DioChs(alpha,Qn,beta,Qd) 
%% Compute controller C(q)= Nc(q)/Dc(q) 
Qdq_sym=poly2sym(Qd) 
Dc_sym=Qdq_sym*Dr_sym 
Dcq=sym2poly(Dc_sym) 
Cq=tf(Qn,Dcq,T,'variable','q') 
%% Minimizing Control Signal by Computing vector V 
L=3 
V=QnQdsym(L-1) 
Qn_sym=poly2sym(Qn) 
Qd_sym=poly2sym(Qd) 
Qn_new_sym=Qn_sym -(beta_sym*V) 
Qd_new_sym=Qd_sym+(alpha_sym*V) 
%Qn_new 
[COs21 CO021 order21]=COPs(Qn_new_sym) 
[VB21 ConsK21]=getVBs(COs21,CO021,order21) 
V=pinv(VB21)*ConsK21 
V_sym=poly2sym(V') 
Qn_new_sym=Qn_sym -(beta_sym*V_sym) 
Qn_new_final=sym2poly(Qn_new_sym) 
%Qd_new 
Qd_new_sym=Qd_sym +(alpha_sym*V_sym) 
Qd_new_final=sym2poly(Qd_new_sym) 
%% Compute controller C(q)= Nc(q)/Dc(q) 
Dc_new_sym=Qd_new_sym*Dr_sym 
Dcq_new=sym2poly(Dc_new_sym) 
Cq=tf(Qn_new_final,Dcq_new,T,'variable','q') 
%% 
%% ---------------- WITH DISTURBANCES----------------- 
%% Disturbance information 
Ws=tf([0.2],[1 0 4])          %% Reference signal in s-domain  
Ws=zpk(Ws) 
Wz=zpk(c2d(Ws,T)) 
[Nwz Dwz]=tfdata(Wz,'v')    %% Reference signal in z-domain 
Wq=SQs(Ws,T) 
[Nwq Dwq]=tfdata(Wq,'v')    %% Reference signal in q-domain 
Dwq_root=roots(Dwq) 
%% Symbolized plant, disturbance and reference signals by variable x 

instead of q 
Dp_sym=poly2sym(Dpq); 
Dr_sym=poly2sym(Drq); 
Dw_sym=poly2sym(Dwq); 
%% plant, disturbance and reference Factorization 
Wtelda=1; 
Xtelda=1; 
Ytelda=1; 
Ztelda=1;  
DrTelda=Drq; 
DwTelda=Dwq; 
DpTelda=Dpq; 
DrTelda_sym=poly2sym(DrTelda); 
DwTelda_sym=poly2sym(DwTelda); 
DpTelda_sym=poly2sym(DpTelda); 
%% Forming alpha_q and beta_q 
beta_sym=DrTelda_sym*DwTelda_sym*DpTelda_sym; 
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beta=sym2poly(beta_sym) 
alpha=Npq 
alpha_sym=poly2sym(alpha); 
%% Solving Diophantine by computing polynomials Qn, Qd 
[MOQnQd]=Mini(alpha,beta) 
[Qn_sym Qd_sym]=QnQdsym(MOQnQd) 
DE=(collect(simplify((alpha_sym *Qn_sym)+(beta_sym*Qd_sym))-1)) 
[COs CO0 order]=COPs(DE) 
[VB ConsK]=getVBs(COs,CO0,order) 
QnQd=pinv(VB)*ConsK 
Qn=QnQd(1:1:MOQnQd+1) 
Qd=QnQd(MOQnQd+2:1:2*MOQnQd+2) 
Qn_q=tf(Qn',1,T,'variable','q') 
Qd_q=tf(Qd',1,T,'variable','q') 
%% Check if the Diophantine equations are OK or  not 
[Qn,DQn]=tfdata(Qn_q,'v')  
[Qd,DQd]=tfdata(Qd_q,'v')  
DC=DioChs(alpha,Qn,beta,Qd) 
%% Compute controller C(q)= Nc(q)/Dc(q) 
Qdq_sym=poly2sym(Qd) 
Dc_sym=Qdq_sym*Dr_sym*Dw_sym 
Dcq=sym2poly(Dc_sym) 
Cq=tf(Qn,Dcq,T,'variable','q') 
%% 
%% ---------------- WITH DISTURBANCES, CONTROL CONSTRAINT------------ 
%% Minimizing Control Signal by Computing vector V 
L=3 
[x Qn_new]=performance2s(Qn_q,Pq,Rq,Ps,L) 
x=x(end:-1:1); 
Qn_q_New=tf(Qn_new(end:-1:1),1,T,'variable','q') 
%------------------------------- 
% Compute controller C(q)= Nc(q)/Dc(q) 
Cq_new=tf(Qn_new(end:-1:1),Dcq,T,'variable','q') 

 

 

b. Developing control and response signals in the case of tracking 

problem via M-file 

 

%% Generate time domain input 
Amplitude=0.5; 
t=0:0.001:5;  
u=Amplitude*ones(1,length(t)); 
 %% Without Control Signal Minimizing 
[sys1,Ter1,Tur1,Tyr1]= RFsyssthesis(Cq,Pq) 
%-------------------- 
figure(1)        % Step Response of minimum order solutions 
subplot(3,1,1)    
lsim(Tyr1,u,t) 
title(['Response , when R is step with Amplitude = 0.5']); 

  
C=lsim(Tyr1,u,t); 
CC=norm(C,inf); 
OS=((CC-Amplitude)*100)/Amplitude 
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% -------------- 
C=lsim(Tur1,u,t); 
subplot(3,1,2) 
lsim(Tur1,u,t) 
title(['Control Signal , when R is step with Amplitude = 0.5']); 

  
Inf_Norm_U_N1_NO=norm(C,inf) 
%--------------- 
C=lsim(Ter1,u,t); 
subplot(3,1,3) 
lsim(Ter1,u,t) 
title(['Error Signal , when R is step with Amplitude = 0.5']) 

  
Inf_Norm_Error_N1_NO=norm(C,inf) 
Sec_Norm_Error_N1_NO=norm(C,2) 
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APPENDIX B  USED SOFTWARE 

 

 

a. Windows XP 

 

b. MATLAB  R2010a  (matrix  laboratory)  is  a  numerical  computing  

environment  and fourth-generation programming language. Developed by 

MathWorks, MATLAB allows matrix  manipulations, plotting of functions 

and data, implementation of algorithms, creation of user  interfaces, and 

interfacing with programs written in other languages, including C, C++, and 

FORTRAN. It is used to simulate thesis M-file codes 
 
 

c. SIMULINK 7.4, developed by MathWorks, is a commercial tool for 

modeling, simulating and analyzing multi-domain dynamic systems. Its 

primary interface is a graphical block diagramming tool and a customizable 

set of block libraries. It offers tight integration with the rest of the  

MATLAB environment and can  either drive MATLAB or be scripted  from  

it.  SIMULINK  is  widely  used  in  control  theory  and  digital  signal 

processing for multi-domain simulation and design. It is used to simulate thesis 

models and obtaining virtual reality simulation. 

 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Numerical_analysis
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